添加dbscan
This commit is contained in:
94
cucyuqing/dbscan.py
Normal file
94
cucyuqing/dbscan.py
Normal file
@@ -0,0 +1,94 @@
|
||||
from typing_extensions import Doc
|
||||
import numpy
|
||||
import asyncio
|
||||
import json
|
||||
from dataclasses import dataclass
|
||||
from sklearn.cluster import DBSCAN
|
||||
from sklearn.metrics import pairwise_distances
|
||||
|
||||
from cucyuqing.pg import pool, get_cur
|
||||
|
||||
@dataclass
|
||||
class Document:
|
||||
id: int
|
||||
title: str
|
||||
content: str
|
||||
similarity: float = 0.0
|
||||
|
||||
@dataclass
|
||||
class DBScanResult:
|
||||
noise: list[Document]
|
||||
clusters: list[list[Document]]
|
||||
|
||||
from sklearn.metrics.pairwise import cosine_similarity
|
||||
|
||||
async def run_dbscan() -> DBScanResult:
|
||||
# 从 PG 数据库获取数据
|
||||
async with get_cur() as cur:
|
||||
await cur.execute(
|
||||
"""
|
||||
SELECT id, title, content, embedding
|
||||
FROM risk_news
|
||||
WHERE NOT embedding_updated_at IS NULL
|
||||
AND time > now() - interval '14 day'
|
||||
ORDER BY time desc
|
||||
LIMIT 10000
|
||||
;"""
|
||||
)
|
||||
rows = await cur.fetchall()
|
||||
docs: list[Document] = [
|
||||
Document(row[0], row[1], row[2])
|
||||
for row in rows
|
||||
]
|
||||
embeddings = [numpy.array(json.loads(row[3])) for row in rows]
|
||||
|
||||
# 计算余弦距离矩阵
|
||||
cosine_distances = pairwise_distances(embeddings, metric='cosine')
|
||||
|
||||
# 初始化DBSCAN模型
|
||||
dbscan = DBSCAN(eps=0.25, min_samples=2, metric='precomputed') # Adjust eps as needed
|
||||
|
||||
# 进行聚类
|
||||
dbscan.fit(cosine_distances)
|
||||
|
||||
# 获取每个样本的聚类标签
|
||||
labels: list[int] = dbscan.labels_ # type: ignore
|
||||
|
||||
# 输出每个聚类中的文档
|
||||
ret: DBScanResult = DBScanResult(noise=[], clusters=[])
|
||||
unique_labels = set(labels)
|
||||
for label in unique_labels:
|
||||
class_member_mask = (labels == label)
|
||||
cluster_docs = [docs[i] for i in range(len(labels)) if class_member_mask[i]] # type: ignore
|
||||
cluster_embeddings = [embeddings[i] for i in range(len(labels)) if class_member_mask[i]] # type: ignore
|
||||
|
||||
if label == -1:
|
||||
# -1 is the label for noise points
|
||||
ret.noise = cluster_docs
|
||||
else:
|
||||
# 计算质心
|
||||
centroid = numpy.mean(cluster_embeddings, axis=0).reshape(1, -1)
|
||||
# 计算相似度
|
||||
similarities = cosine_similarity(centroid, cluster_embeddings).flatten()
|
||||
# 根据相似度排序
|
||||
sorted_indices = numpy.argsort(similarities)[::-1]
|
||||
sorted_cluster_docs = []
|
||||
for i in sorted_indices:
|
||||
doc = cluster_docs[i]
|
||||
doc.similarity = similarities[i]
|
||||
sorted_cluster_docs.append(doc)
|
||||
ret.clusters.append(sorted_cluster_docs)
|
||||
|
||||
return ret
|
||||
|
||||
async def main():
|
||||
await pool.open()
|
||||
result = await run_dbscan()
|
||||
print(f"噪声文档: {len(result.noise)}")
|
||||
for i, cluster in enumerate(result.clusters):
|
||||
print('----------------')
|
||||
for doc in cluster:
|
||||
print(f"聚类 {i} 文档: {doc.title} 相似度: {doc.similarity}")
|
||||
|
||||
if __name__ == '__main__':
|
||||
asyncio.run(main())
|
||||
@@ -8,3 +8,4 @@ databases[aiomysql]
|
||||
openai
|
||||
tokenizers
|
||||
tqdm
|
||||
scikit-learn
|
||||
|
||||
Reference in New Issue
Block a user