添加 cl100k_base 字典与 text-embedding-3 适配
This commit is contained in:
@@ -11,7 +11,7 @@ from cucyuqing.pg import pool, get_cur
|
||||
from cucyuqing.config import OPENAI_API_KEY, OPENAI_BASE_URL
|
||||
from cucyuqing.utils import print
|
||||
|
||||
EmbeddingModel = Literal["acge-large-zh", "text-embedding-3-large"]
|
||||
EmbeddingModel = Literal["acge-large-zh", "text-embedding-3-small"]
|
||||
|
||||
embedding_client = openai.AsyncOpenAI(
|
||||
api_key=OPENAI_API_KEY,
|
||||
@@ -19,11 +19,14 @@ embedding_client = openai.AsyncOpenAI(
|
||||
)
|
||||
|
||||
|
||||
tokenizer = Tokenizer.from_file("cucyuqing/res/acge-large-zh/tokenizer.json")
|
||||
tokenizers: dict[EmbeddingModel, Any] = {}
|
||||
tokenizers['acge-large-zh'] = Tokenizer.from_file("cucyuqing/res/acge-large-zh/tokenizer.json")
|
||||
tokenizers['text-embedding-3-small'] = Tokenizer.from_file("cucyuqing/res/cl100k_base/tokenizer.json")
|
||||
|
||||
|
||||
def get_token_length(text: str) -> int:
|
||||
def get_token_length(model_name: EmbeddingModel, text: str) -> int:
|
||||
"""使用 openai 提供的 tokenizer **估算** token 长度"""
|
||||
tokenizer = tokenizers[model_name]
|
||||
return len(tokenizer.encode(text).tokens)
|
||||
|
||||
|
||||
@@ -39,8 +42,9 @@ def hash_text(text: str, model: EmbeddingModel) -> str:
|
||||
return hashlib.md5((text + "|" + model).encode()).hexdigest()
|
||||
|
||||
|
||||
def truncate_text(text: str, max_length: int) -> str:
|
||||
def truncate_text(model_name: EmbeddingModel, text: str, max_length: int) -> str:
|
||||
"""截断文本"""
|
||||
tokenizer = tokenizers[model_name]
|
||||
tokens = tokenizer.encode(text).tokens[0:max_length]
|
||||
return ''.join(tokens)
|
||||
|
||||
@@ -59,9 +63,9 @@ async def get_embeddings(
|
||||
- quiet: 是否关闭输出
|
||||
"""
|
||||
|
||||
# 针对 acge-large-zh 模型,需要将文本截断 1024 - 200
|
||||
# 针对 acge-large-zh 模型,需要将文本截断 1024 - 2
|
||||
if model == "acge-large-zh":
|
||||
texts = [truncate_text(text, 1024 - 2) for text in texts]
|
||||
texts = [truncate_text(model, text, 1024 - 2) for text in texts]
|
||||
|
||||
# 构建任务列表
|
||||
ids = list(range(len(texts)))
|
||||
@@ -84,13 +88,13 @@ async def get_embeddings(
|
||||
batch_token_length = 0 # TEMP
|
||||
iter_batch: list[Task] = [] # TEMP
|
||||
for q in query:
|
||||
batch_token_length += get_token_length(q.text)
|
||||
batch_token_length += get_token_length(model, q.text)
|
||||
|
||||
# 该批次已满,将该批次加入 batch_query
|
||||
if batch_token_length > max_batch_token_length or len(iter_batch) >= 32:
|
||||
batch_query.append(iter_batch)
|
||||
iter_batch = [q]
|
||||
batch_token_length = get_token_length(q.text)
|
||||
batch_token_length = get_token_length(model, q.text)
|
||||
continue
|
||||
|
||||
iter_batch.append(q)
|
||||
@@ -113,10 +117,10 @@ async def get_embeddings(
|
||||
input=[q.text for q in query],
|
||||
model=model,
|
||||
)
|
||||
elif model == "text-embedding-3-large":
|
||||
elif model == "text-embedding-3-small":
|
||||
resp = await embedding_client.embeddings.create(
|
||||
input=[q.text for q in query],
|
||||
model="text-embedding-3-large",
|
||||
model=model,
|
||||
dimensions=1024,
|
||||
)
|
||||
else:
|
||||
|
||||
200353
cucyuqing/res/cl100k_base/tokenizer.json
Normal file
200353
cucyuqing/res/cl100k_base/tokenizer.json
Normal file
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user