week13 format mowgli AVL

This commit is contained in:
2021-05-26 20:20:01 +08:00
parent 679b38ab78
commit cacf5445ad
4 changed files with 424 additions and 512 deletions

View File

@@ -1,246 +1,208 @@
#include <stdio.h>
#include "AVL.h"
#include <malloc.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
int max(int a, int b)
{
if (a > b)
{
return a;
}
int max(int a, int b) {
if (a > b) {
return a;
}
return b;
return b;
}
int getHeight(Node *N)
{
if (N == NULL)
return -1;
int getHeight(Node *N) {
if (N == NULL)
return -1;
int x = getHeight(N->left);
int y = getHeight(N->right);
int x = getHeight(N->left);
int y = getHeight(N->right);
if (x >= y)
return x + 1;
if (x >= y)
return x + 1;
return y + 1;
return y + 1;
}
int getBalance(Node *N)
{
return getHeight(N->left) - getHeight(N->right);
int getBalance(Node *N) { return getHeight(N->left) - getHeight(N->right); }
Node *findNode(Node *root, int x) {
if (root == NULL) {
return NULL;
}
if (root->key == x) {
return root;
}
if (x < root->key) {
return findNode(root->left, x);
}
return findNode(root->right, x);
}
Node *findNode(Node *root, int x)
{
if (root == NULL)
{
return NULL;
}
Node *rightRotate(Node *N) {
Node *N1 = N->left;
Node *N2 = N1->right;
if (root->key == x)
{
return root;
}
N1->right = N;
N->left = N2;
if (x < root->key)
{
return findNode(root->left, x);
}
N->height = max(getHeight(N->left), getHeight(N->right)) + 1;
N1->height = max(getHeight(N1->left), getHeight(N1->right)) + 1;
return findNode(root->right, x);
return N1;
}
Node *rightRotate(Node *N)
{
Node *N1 = N->left;
Node *N2 = N1->right;
Node *leftRotate(Node *N) {
Node *N1 = N->right;
Node *N2 = N1->left;
N1->right = N;
N->left = N2;
N1->left = N;
N->right = N2;
N->height = max(getHeight(N->left), getHeight(N->right)) + 1;
N1->height = max(getHeight(N1->left), getHeight(N1->right)) + 1;
N->height = max(getHeight(N->left), getHeight(N->right)) + 1;
N1->height = max(getHeight(N1->left), getHeight(N1->right)) + 1;
return N1;
return N1;
}
Node *leftRotate(Node *N)
{
Node *N1 = N->right;
Node *N2 = N1->left;
N1->left = N;
N->right = N2;
N->height = max(getHeight(N->left), getHeight(N->right)) + 1;
N1->height = max(getHeight(N1->left), getHeight(N1->right)) + 1;
return N1;
Node *minNode(Node *N) {
while (N->left != NULL) {
N = N->left;
}
return N;
}
Node *minNode(Node *N)
{
while (N->left != NULL)
{
N = N->left;
}
return N;
Node *insertNode(Node **root, int x) {
Node *ans;
/* insert the data */
if (*root == NULL) {
Node *temp = (Node *)malloc(sizeof(Node));
temp->key = x;
temp->height = 0;
temp->left = NULL;
temp->right = NULL;
*root = temp;
ans = temp;
return ans;
} else if ((*root)->key > x) {
ans = insertNode(&(*root)->left, x);
} else if ((*root)->key < x) {
ans = insertNode(&(*root)->right, x);
}
/* handle the unbalance problem */
(*root)->height =
1 + max(getHeight((*root)->left), getHeight((*root)->right));
int balance = getBalance(*root);
/* case 1 left left unbalance */
if (balance > 1 && getBalance((*root)->left) >= 0) {
*root = rightRotate(*root);
}
/* case 2 left right unbalance */
if (balance > 1 && getBalance((*root)->left) < 0) {
(*root)->left = leftRotate((*root)->left);
*root = rightRotate(*root);
}
/* case 3 right left unbalance */
if (balance < -1 && getBalance((*root)->right) > 0) {
(*root)->right = rightRotate((*root)->right);
*root = leftRotate(*root);
}
/* case 4 right right unbalance */
if (balance < -1 && getBalance((*root)->right) <= 0) {
*root = leftRotate(*root);
}
return ans;
}
Node *insertNode(Node **root, int x)
{
Node *ans;
Node *deleteNode(Node **root, int x) {
Node *temp = *root;
/* insert the data */
if (*root == NULL)
{
Node *temp = (Node *)malloc(sizeof(Node));
temp->key = x;
temp->height = 0;
temp->left = NULL;
temp->right = NULL;
*root = temp;
ans = temp;
return ans;
}
else if ((*root)->key > x)
{
ans = insertNode(&(*root)->left, x);
}
else if ((*root)->key < x)
{
ans = insertNode(&(*root)->right, x);
}
if (*root == NULL)
return *root;
/* handle the unbalance problem */
(*root)->height = 1 + max(getHeight((*root)->left), getHeight((*root)->right));
if (x < (*root)->key) {
temp = deleteNode(&(*root)->left, x);
}
int balance = getBalance(*root);
else if (x > (*root)->key) {
temp = deleteNode(&(*root)->right, x);
}
/* case 1 left left unbalance */
if (balance > 1 && getBalance((*root)->left) >= 0)
{
*root = rightRotate(*root);
}
else {
if ((*root)->left == NULL || (*root)->right == NULL) {
Node *child = (*root)->left != NULL ? (*root)->left : (*root)->right;
/* case 2 left right unbalance */
if (balance > 1 && getBalance((*root)->left) < 0)
{
(*root)->left = leftRotate((*root)->left);
*root = rightRotate(*root);
}
if (child == NULL) { // no child case;
*root = NULL;
return temp;
} else {
(*root)->key = child->key;
if ((*root)->left &&
(*root)->left->key == child->key) { // left child case;
temp = deleteNode(&(*root)->left, child->key);
} else if ((*root)->right &&
(*root)->right->key == child->key) { // right child case;
temp = deleteNode(&(*root)->right, child->key);
}
}
} else { // two children case;
Node *child = minNode((*root)->right);
(*root)->key = child->key;
temp = deleteNode(&(*root)->right, child->key);
}
}
/* case 3 right left unbalance */
if (balance < -1 && getBalance((*root)->right) > 0)
{
(*root)->right = rightRotate((*root)->right);
*root = leftRotate(*root);
}
if ((*root) == NULL)
return *root;
/* case 4 right right unbalance */
if (balance < -1 && getBalance((*root)->right) <= 0)
{
*root = leftRotate(*root);
}
int balance = getBalance(*root);
return ans;
(*root)->height =
1 + max(getHeight((*root)->left), getHeight((*root)->right));
/* case 1 left left unbalance */
if (balance > 1 && getBalance((*root)->left) >= 0) {
*root = rightRotate(*root);
}
/* case 2 left right unbalance */
if (balance > 1 && getBalance((*root)->left) < 0) {
(*root)->left = leftRotate((*root)->left);
*root = rightRotate(*root);
}
/* case 3 right left unbalance */
if (balance < -1 && getBalance((*root)->right) > 0) {
(*root)->right = rightRotate((*root)->right);
*root = leftRotate(*root);
}
/* case 4 right right unbalance */
if (balance < -1 && getBalance((*root)->right) <= 0) {
*root = leftRotate(*root);
}
return temp;
}
Node *deleteNode(Node **root, int x)
{
Node *temp = *root;
void destroyTree(Node *root) {
if (root == NULL)
return;
if (*root == NULL)
return *root;
destroyTree(root->left);
destroyTree(root->right);
if (x < (*root)->key)
{
temp = deleteNode(&(*root)->left, x);
}
else if (x > (*root)->key)
{
temp = deleteNode(&(*root)->right, x);
}
else
{
if ((*root)->left == NULL || (*root)->right == NULL)
{
Node *child = (*root)->left != NULL ? (*root)->left : (*root)->right;
if (child == NULL)
{ // no child case;
*root = NULL;
return temp;
}
else
{
(*root)->key = child->key;
if ((*root)->left && (*root)->left->key == child->key)
{ // left child case;
temp = deleteNode(&(*root)->left, child->key);
}
else if ((*root)->right && (*root)->right->key == child->key)
{ // right child case;
temp = deleteNode(&(*root)->right, child->key);
}
}
}
else
{ // two children case;
Node *child = minNode((*root)->right);
(*root)->key = child->key;
temp = deleteNode(&(*root)->right, child->key);
}
}
if ((*root) == NULL)
return *root;
int balance = getBalance(*root);
(*root)->height = 1 + max(getHeight((*root)->left), getHeight((*root)->right));
/* case 1 left left unbalance */
if (balance > 1 && getBalance((*root)->left) >= 0)
{
*root = rightRotate(*root);
}
/* case 2 left right unbalance */
if (balance > 1 && getBalance((*root)->left) < 0)
{
(*root)->left = leftRotate((*root)->left);
*root = rightRotate(*root);
}
/* case 3 right left unbalance */
if (balance < -1 && getBalance((*root)->right) > 0)
{
(*root)->right = rightRotate((*root)->right);
*root = leftRotate(*root);
}
/* case 4 right right unbalance */
if (balance < -1 && getBalance((*root)->right) <= 0)
{
*root = leftRotate(*root);
}
return temp;
free(root);
}
void destroyTree(Node *root)
{
if (root == NULL)
return;
destroyTree(root->left);
destroyTree(root->right);
free(root);
}

View File

@@ -1,59 +1,58 @@
typedef struct Node Node;
typedef struct Node
{
int key, height;
Node *left, *right;
typedef struct Node {
int key, height;
Node *left, *right;
} Node;
Node *insertNode(Node **proot, int x);
/*
function:
inserts a new node to the tree
inserts a new node to the tree
input:
proot - pointer to the pointer to the tree root
x - the key of the new node
proot - pointer to the pointer to the tree root
x - the key of the new node
output:
returns a pointer to the newly inserted node
returns NULL if insertion is not successful
returns a pointer to the newly inserted node
returns NULL if insertion is not successful
*/
Node *deleteNode(Node **proot, int x);
/*
function:
removes a node from the tree without freeing it
removes a node from the tree without freeing it
input:
proot - pointer to the pointer to the tree root
x - the key of of the node to be deleted
proot - pointer to the pointer to the tree root
x - the key of of the node to be deleted
output:
returns a pointer to the deleted node
returns NULL if no such node exists
returns a pointer to the deleted node
returns NULL if no such node exists
*/
Node *findNode(Node *root, int x);
/*
function:
searches for a node in the tree
searches for a node in the tree
input:
root - pointer to the tree root
x - the key of of the node to be searched
root - pointer to the tree root
x - the key of of the node to be searched
output:
returns a pointer to the found node
returns NULL if no such node exists
returns a pointer to the found node
returns NULL if no such node exists
*/
void destroyTree(Node *root);
/*
function:
deletes all the nodes in the tree and frees the memory occupied by them
deletes all the nodes in the tree and frees the memory occupied by them
input:
root - pointer to the tree node
root - pointer to the tree node
*/
void printTree(Node *root);
/*
function:
prints ascii tree for given Node structure
this function is already implemented in printTree.cpp
prints ascii tree for given Node structure
this function is already implemented in printTree.cpp
input:
root - pointer to the tree node
root - pointer to the tree node
*/

View File

@@ -1,33 +1,31 @@
#include "AVL.h"
#include <stdio.h>
#include <stdlib.h>
#include "AVL.h"
int main()
{
Node *root = NULL;
int main() {
Node *root = NULL;
int ins[] = {16, 10, 21, 5, 12, 18, 24, 2, 8, 11, 15, 19, 23, 31, 1, 6, 9, 13, 22, 7};
int len = 20, x;
for (int i = 0; i < len; i++)
{
printf("\nAfter inserting key %d..\n", ins[i]);
insertNode(&root, ins[i]);
printTree(root);
}
printf("\nInsert a new node (+ to insert, - to delete, 0 to exit): ");
scanf("%d", &x);
while (x)
{
if (x > 0)
insertNode(&root, x);
else
free(deleteNode(&root, -x));
printTree(root);
printf("\nInsert a new node (+ to insert, - to delete, 0 to exit): ");
scanf("%d", &x);
}
int ins[] = {16, 10, 21, 5, 12, 18, 24, 2, 8, 11,
15, 19, 23, 31, 1, 6, 9, 13, 22, 7};
int len = 20, x;
for (int i = 0; i < len; i++) {
printf("\nAfter inserting key %d..\n", ins[i]);
insertNode(&root, ins[i]);
printTree(root);
}
printf("\nInsert a new node (+ to insert, - to delete, 0 to exit): ");
scanf("%d", &x);
while (x) {
if (x > 0)
insertNode(&root, x);
else
free(deleteNode(&root, -x));
printTree(root);
printf("\nInsert a new node (+ to insert, - to delete, 0 to exit): ");
scanf("%d", &x);
}
destroyTree(root);
destroyTree(root);
return 0;
}
return 0;
}

View File

@@ -1,28 +1,27 @@
#include "AVL.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "AVL.h"
//printing tree in ascii
// printing tree in ascii
typedef struct asciinode_struct asciinode;
struct asciinode_struct
{
asciinode *left, *right;
struct asciinode_struct {
asciinode *left, *right;
//length of the edge from this node to its children
int edge_length;
// length of the edge from this node to its children
int edge_length;
int height;
int height;
int lablen;
int lablen;
//-1=I am left, 0=I am root, 1=right
int parent_dir;
//-1=I am left, 0=I am root, 1=right
int parent_dir;
//max supported unit32 in dec, 10 digits max
char label[11];
// max supported unit32 in dec, 10 digits max
char label[11];
};
#define MAX_HEIGHT 1000
@@ -30,266 +29,220 @@ int lprofile[MAX_HEIGHT];
int rprofile[MAX_HEIGHT];
#define INFINITY (1 << 20)
//adjust gap between left and right nodes
// adjust gap between left and right nodes
int gap = 3;
//used for printing next node in the same level,
//this is the x coordinate of the next char printed
// used for printing next node in the same level,
// this is the x coordinate of the next char printed
int print_next;
int MIN(int X, int Y)
{
return ((X) < (Y)) ? (X) : (Y);
int MIN(int X, int Y) { return ((X) < (Y)) ? (X) : (Y); }
int MAX(int X, int Y) { return ((X) > (Y)) ? (X) : (Y); }
asciinode *build_ascii_tree_recursive(Node *t) {
asciinode *node;
if (t == NULL)
return NULL;
node = (asciinode *)malloc(sizeof(asciinode));
node->left = build_ascii_tree_recursive(t->left);
node->right = build_ascii_tree_recursive(t->right);
if (node->left != NULL) {
node->left->parent_dir = -1;
}
if (node->right != NULL) {
node->right->parent_dir = 1;
}
sprintf(node->label, "%d|%d", t->key, t->height);
node->lablen = strlen(node->label);
return node;
}
int MAX(int X, int Y)
{
return ((X) > (Y)) ? (X) : (Y);
// Copy the tree into the ascii node structre
asciinode *build_ascii_tree(Node *t) {
asciinode *node;
if (t == NULL)
return NULL;
node = build_ascii_tree_recursive(t);
node->parent_dir = 0;
return node;
}
asciinode *build_ascii_tree_recursive(Node *t)
{
asciinode *node;
if (t == NULL)
return NULL;
node = (asciinode *)malloc(sizeof(asciinode));
node->left = build_ascii_tree_recursive(t->left);
node->right = build_ascii_tree_recursive(t->right);
if (node->left != NULL)
{
node->left->parent_dir = -1;
}
if (node->right != NULL)
{
node->right->parent_dir = 1;
}
sprintf(node->label, "%d|%d", t->key, t->height);
node->lablen = strlen(node->label);
return node;
// Free all the nodes of the given tree
void free_ascii_tree(asciinode *node) {
if (node == NULL)
return;
free_ascii_tree(node->left);
free_ascii_tree(node->right);
free(node);
}
//Copy the tree into the ascii node structre
asciinode *build_ascii_tree(Node *t)
{
asciinode *node;
if (t == NULL)
return NULL;
node = build_ascii_tree_recursive(t);
node->parent_dir = 0;
return node;
// The following function fills in the lprofile array for the given tree.
// It assumes that the center of the label of the root of this tree
// is located at a position (x,y). It assumes that the edge_length
// fields have been computed for this tree.
void compute_lprofile(asciinode *node, int x, int y) {
int i, isleft;
if (node == NULL)
return;
isleft = (node->parent_dir == -1);
lprofile[y] = MIN(lprofile[y], x - ((node->lablen - isleft) / 2));
if (node->left != NULL) {
for (i = 1; i <= node->edge_length && y + i < MAX_HEIGHT; i++) {
lprofile[y + i] = MIN(lprofile[y + i], x - i);
}
}
compute_lprofile(node->left, x - node->edge_length - 1,
y + node->edge_length + 1);
compute_lprofile(node->right, x + node->edge_length + 1,
y + node->edge_length + 1);
}
//Free all the nodes of the given tree
void free_ascii_tree(asciinode *node)
{
if (node == NULL)
return;
free_ascii_tree(node->left);
free_ascii_tree(node->right);
free(node);
void compute_rprofile(asciinode *node, int x, int y) {
int i, notleft;
if (node == NULL)
return;
notleft = (node->parent_dir != -1);
rprofile[y] = MAX(rprofile[y], x + ((node->lablen - notleft) / 2));
if (node->right != NULL) {
for (i = 1; i <= node->edge_length && y + i < MAX_HEIGHT; i++) {
rprofile[y + i] = MAX(rprofile[y + i], x + i);
}
}
compute_rprofile(node->left, x - node->edge_length - 1,
y + node->edge_length + 1);
compute_rprofile(node->right, x + node->edge_length + 1,
y + node->edge_length + 1);
}
//The following function fills in the lprofile array for the given tree.
//It assumes that the center of the label of the root of this tree
//is located at a position (x,y). It assumes that the edge_length
//fields have been computed for this tree.
void compute_lprofile(asciinode *node, int x, int y)
{
int i, isleft;
if (node == NULL)
return;
isleft = (node->parent_dir == -1);
lprofile[y] = MIN(lprofile[y], x - ((node->lablen - isleft) / 2));
if (node->left != NULL)
{
for (i = 1; i <= node->edge_length && y + i < MAX_HEIGHT; i++)
{
lprofile[y + i] = MIN(lprofile[y + i], x - i);
}
}
compute_lprofile(node->left, x - node->edge_length - 1, y + node->edge_length + 1);
compute_lprofile(node->right, x + node->edge_length + 1, y + node->edge_length + 1);
// This function fills in the edge_length and
// height fields of the specified tree
void compute_edge_lengths(asciinode *node) {
int h, hmin, i, delta;
if (node == NULL)
return;
compute_edge_lengths(node->left);
compute_edge_lengths(node->right);
/* first fill in the edge_length of node */
if (node->right == NULL && node->left == NULL) {
node->edge_length = 0;
} else {
if (node->left != NULL) {
for (i = 0; i < node->left->height && i < MAX_HEIGHT; i++) {
rprofile[i] = -INFINITY;
}
compute_rprofile(node->left, 0, 0);
hmin = node->left->height;
} else {
hmin = 0;
}
if (node->right != NULL) {
for (i = 0; i < node->right->height && i < MAX_HEIGHT; i++) {
lprofile[i] = INFINITY;
}
compute_lprofile(node->right, 0, 0);
hmin = MIN(node->right->height, hmin);
} else {
hmin = 0;
}
delta = 4;
for (i = 0; i < hmin; i++) {
delta = MAX(delta, gap + 1 + rprofile[i] - lprofile[i]);
}
// If the node has two children of height 1, then we allow the
// two leaves to be within 1, instead of 2
if (((node->left != NULL && node->left->height == 1) ||
(node->right != NULL && node->right->height == 1)) &&
delta > 4) {
delta--;
}
node->edge_length = ((delta + 1) / 2) - 1;
}
// now fill in the height of node
h = 1;
if (node->left != NULL) {
h = MAX(node->left->height + node->edge_length + 1, h);
}
if (node->right != NULL) {
h = MAX(node->right->height + node->edge_length + 1, h);
}
node->height = h;
}
void compute_rprofile(asciinode *node, int x, int y)
{
int i, notleft;
if (node == NULL)
return;
notleft = (node->parent_dir != -1);
rprofile[y] = MAX(rprofile[y], x + ((node->lablen - notleft) / 2));
if (node->right != NULL)
{
for (i = 1; i <= node->edge_length && y + i < MAX_HEIGHT; i++)
{
rprofile[y + i] = MAX(rprofile[y + i], x + i);
}
}
compute_rprofile(node->left, x - node->edge_length - 1, y + node->edge_length + 1);
compute_rprofile(node->right, x + node->edge_length + 1, y + node->edge_length + 1);
// This function prints the given level of the given tree, assuming
// that the node has the given x cordinate.
void print_level(asciinode *node, int x, int level) {
int i, isleft;
if (node == NULL)
return;
isleft = (node->parent_dir == -1);
if (level == 0) {
for (i = 0; i < (x - print_next - ((node->lablen - isleft) / 2)); i++) {
printf(" ");
}
print_next += i;
printf("%s", node->label);
print_next += node->lablen;
} else if (node->edge_length >= level) {
if (node->left != NULL) {
for (i = 0; i < (x - print_next - (level)); i++) {
printf(" ");
}
print_next += i;
printf("/");
print_next++;
}
if (node->right != NULL) {
for (i = 0; i < (x - print_next + (level)); i++) {
printf(" ");
}
print_next += i;
printf("\\");
print_next++;
}
} else {
print_level(node->left, x - node->edge_length - 1,
level - node->edge_length - 1);
print_level(node->right, x + node->edge_length + 1,
level - node->edge_length - 1);
}
}
//This function fills in the edge_length and
//height fields of the specified tree
void compute_edge_lengths(asciinode *node)
{
int h, hmin, i, delta;
if (node == NULL)
return;
compute_edge_lengths(node->left);
compute_edge_lengths(node->right);
/* first fill in the edge_length of node */
if (node->right == NULL && node->left == NULL)
{
node->edge_length = 0;
}
else
{
if (node->left != NULL)
{
for (i = 0; i < node->left->height && i < MAX_HEIGHT; i++)
{
rprofile[i] = -INFINITY;
}
compute_rprofile(node->left, 0, 0);
hmin = node->left->height;
}
else
{
hmin = 0;
}
if (node->right != NULL)
{
for (i = 0; i < node->right->height && i < MAX_HEIGHT; i++)
{
lprofile[i] = INFINITY;
}
compute_lprofile(node->right, 0, 0);
hmin = MIN(node->right->height, hmin);
}
else
{
hmin = 0;
}
delta = 4;
for (i = 0; i < hmin; i++)
{
delta = MAX(delta, gap + 1 + rprofile[i] - lprofile[i]);
}
//If the node has two children of height 1, then we allow the
//two leaves to be within 1, instead of 2
if (((node->left != NULL && node->left->height == 1) ||
(node->right != NULL && node->right->height == 1)) &&
delta > 4)
{
delta--;
}
node->edge_length = ((delta + 1) / 2) - 1;
}
//now fill in the height of node
h = 1;
if (node->left != NULL)
{
h = MAX(node->left->height + node->edge_length + 1, h);
}
if (node->right != NULL)
{
h = MAX(node->right->height + node->edge_length + 1, h);
}
node->height = h;
// prints ascii tree for given Node structure
void printTree(Node *root) {
asciinode *proot;
int xmin, i;
if (root == NULL)
return;
proot = build_ascii_tree(root);
compute_edge_lengths(proot);
for (i = 0; i < proot->height && i < MAX_HEIGHT; i++) {
lprofile[i] = INFINITY;
}
compute_lprofile(proot, 0, 0);
xmin = 0;
for (i = 0; i < proot->height && i < MAX_HEIGHT; i++) {
xmin = MIN(xmin, lprofile[i]);
}
for (i = 0; i < proot->height; i++) {
print_next = 0;
print_level(proot, -xmin, i);
printf("\n");
}
if (proot->height >= MAX_HEIGHT) {
printf("(This tree is taller than %d, and may be drawn incorrectly.)\n",
MAX_HEIGHT);
}
free_ascii_tree(proot);
}
//This function prints the given level of the given tree, assuming
//that the node has the given x cordinate.
void print_level(asciinode *node, int x, int level)
{
int i, isleft;
if (node == NULL)
return;
isleft = (node->parent_dir == -1);
if (level == 0)
{
for (i = 0; i < (x - print_next - ((node->lablen - isleft) / 2)); i++)
{
printf(" ");
}
print_next += i;
printf("%s", node->label);
print_next += node->lablen;
}
else if (node->edge_length >= level)
{
if (node->left != NULL)
{
for (i = 0; i < (x - print_next - (level)); i++)
{
printf(" ");
}
print_next += i;
printf("/");
print_next++;
}
if (node->right != NULL)
{
for (i = 0; i < (x - print_next + (level)); i++)
{
printf(" ");
}
print_next += i;
printf("\\");
print_next++;
}
}
else
{
print_level(node->left,
x - node->edge_length - 1,
level - node->edge_length - 1);
print_level(node->right,
x + node->edge_length + 1,
level - node->edge_length - 1);
}
}
//prints ascii tree for given Node structure
void printTree(Node *root)
{
asciinode *proot;
int xmin, i;
if (root == NULL)
return;
proot = build_ascii_tree(root);
compute_edge_lengths(proot);
for (i = 0; i < proot->height && i < MAX_HEIGHT; i++)
{
lprofile[i] = INFINITY;
}
compute_lprofile(proot, 0, 0);
xmin = 0;
for (i = 0; i < proot->height && i < MAX_HEIGHT; i++)
{
xmin = MIN(xmin, lprofile[i]);
}
for (i = 0; i < proot->height; i++)
{
print_next = 0;
print_level(proot, -xmin, i);
printf("\n");
}
if (proot->height >= MAX_HEIGHT)
{
printf("(This tree is taller than %d, and may be drawn incorrectly.)\n", MAX_HEIGHT);
}
free_ascii_tree(proot);
}