Add some info and debug logs (#113)
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
import itertools
|
||||
import logging
|
||||
import os
|
||||
import zlib
|
||||
|
||||
@@ -11,7 +12,7 @@ import tokenizers
|
||||
from faster_whisper.audio import decode_audio
|
||||
from faster_whisper.feature_extractor import FeatureExtractor
|
||||
from faster_whisper.tokenizer import Tokenizer
|
||||
from faster_whisper.utils import download_model
|
||||
from faster_whisper.utils import download_model, format_timestamp, get_logger
|
||||
from faster_whisper.vad import (
|
||||
SpeechTimestampsMap,
|
||||
collect_chunks,
|
||||
@@ -93,6 +94,8 @@ class WhisperModel:
|
||||
(concurrent calls to self.model.generate() will run in parallel).
|
||||
This can improve the global throughput at the cost of increased memory usage.
|
||||
"""
|
||||
self.logger = get_logger()
|
||||
|
||||
if os.path.isdir(model_size_or_path):
|
||||
model_path = model_size_or_path
|
||||
else:
|
||||
@@ -211,17 +214,40 @@ class WhisperModel:
|
||||
- a generator over transcribed segments
|
||||
- an instance of AudioInfo
|
||||
"""
|
||||
if not isinstance(audio, np.ndarray):
|
||||
audio = decode_audio(
|
||||
audio, sampling_rate=self.feature_extractor.sampling_rate
|
||||
)
|
||||
sampling_rate = self.feature_extractor.sampling_rate
|
||||
|
||||
duration = audio.shape[0] / self.feature_extractor.sampling_rate
|
||||
if not isinstance(audio, np.ndarray):
|
||||
audio = decode_audio(audio, sampling_rate=sampling_rate)
|
||||
|
||||
duration = audio.shape[0] / sampling_rate
|
||||
|
||||
self.logger.info(
|
||||
"Processing audio with duration %s", format_timestamp(duration)
|
||||
)
|
||||
|
||||
if vad_filter:
|
||||
vad_parameters = {} if vad_parameters is None else vad_parameters
|
||||
speech_chunks = get_speech_timestamps(audio, **vad_parameters)
|
||||
audio = collect_chunks(audio, speech_chunks)
|
||||
|
||||
self.logger.info(
|
||||
"VAD filter removed %s of audio",
|
||||
format_timestamp(duration - (audio.shape[0] / sampling_rate)),
|
||||
)
|
||||
|
||||
if self.logger.isEnabledFor(logging.DEBUG):
|
||||
self.logger.debug(
|
||||
"VAD filter kept the following audio segments: %s",
|
||||
", ".join(
|
||||
"[%s -> %s]"
|
||||
% (
|
||||
format_timestamp(chunk["start"] / sampling_rate),
|
||||
format_timestamp(chunk["end"] / sampling_rate),
|
||||
)
|
||||
for chunk in speech_chunks
|
||||
),
|
||||
)
|
||||
|
||||
else:
|
||||
speech_chunks = None
|
||||
|
||||
@@ -239,6 +265,12 @@ class WhisperModel:
|
||||
results = self.model.detect_language(encoder_output)
|
||||
language_token, language_probability = results[0][0]
|
||||
language = language_token[2:-2]
|
||||
|
||||
self.logger.info(
|
||||
"Detected language '%s' with probability %.2f",
|
||||
language,
|
||||
language_probability,
|
||||
)
|
||||
else:
|
||||
language_probability = 1
|
||||
|
||||
@@ -275,9 +307,7 @@ class WhisperModel:
|
||||
segments = self.generate_segments(features, tokenizer, options, encoder_output)
|
||||
|
||||
if speech_chunks:
|
||||
segments = restore_speech_timestamps(
|
||||
segments, speech_chunks, self.feature_extractor.sampling_rate
|
||||
)
|
||||
segments = restore_speech_timestamps(segments, speech_chunks, sampling_rate)
|
||||
|
||||
audio_info = AudioInfo(
|
||||
language=language,
|
||||
@@ -312,6 +342,11 @@ class WhisperModel:
|
||||
)
|
||||
segment_duration = segment_size * self.feature_extractor.time_per_frame
|
||||
|
||||
if self.logger.isEnabledFor(logging.DEBUG):
|
||||
self.logger.debug(
|
||||
"Processing segment at %s", format_timestamp(time_offset)
|
||||
)
|
||||
|
||||
previous_tokens = all_tokens[prompt_reset_since:]
|
||||
prompt = self.get_prompt(
|
||||
tokenizer,
|
||||
@@ -339,6 +374,12 @@ class WhisperModel:
|
||||
should_skip = False
|
||||
|
||||
if should_skip:
|
||||
self.logger.debug(
|
||||
"No speech threshold is met (%f > %f)",
|
||||
result.no_speech_prob,
|
||||
options.no_speech_threshold,
|
||||
)
|
||||
|
||||
# fast-forward to the next segment boundary
|
||||
seek += segment_size
|
||||
continue
|
||||
@@ -543,12 +584,26 @@ class WhisperModel:
|
||||
):
|
||||
needs_fallback = True # too repetitive
|
||||
|
||||
self.logger.debug(
|
||||
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
|
||||
temperature,
|
||||
compression_ratio,
|
||||
options.compression_ratio_threshold,
|
||||
)
|
||||
|
||||
if (
|
||||
options.log_prob_threshold is not None
|
||||
and avg_log_prob < options.log_prob_threshold
|
||||
):
|
||||
needs_fallback = True # average log probability is too low
|
||||
|
||||
self.logger.debug(
|
||||
"Log probability threshold is not met with temperature %.1f (%f < %f)",
|
||||
temperature,
|
||||
avg_log_prob,
|
||||
options.log_prob_threshold,
|
||||
)
|
||||
|
||||
if not needs_fallback:
|
||||
break
|
||||
|
||||
|
||||
Reference in New Issue
Block a user