Add some info and debug logs (#113)
This commit is contained in:
@@ -1,4 +1,5 @@
|
|||||||
import itertools
|
import itertools
|
||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
import zlib
|
import zlib
|
||||||
|
|
||||||
@@ -11,7 +12,7 @@ import tokenizers
|
|||||||
from faster_whisper.audio import decode_audio
|
from faster_whisper.audio import decode_audio
|
||||||
from faster_whisper.feature_extractor import FeatureExtractor
|
from faster_whisper.feature_extractor import FeatureExtractor
|
||||||
from faster_whisper.tokenizer import Tokenizer
|
from faster_whisper.tokenizer import Tokenizer
|
||||||
from faster_whisper.utils import download_model
|
from faster_whisper.utils import download_model, format_timestamp, get_logger
|
||||||
from faster_whisper.vad import (
|
from faster_whisper.vad import (
|
||||||
SpeechTimestampsMap,
|
SpeechTimestampsMap,
|
||||||
collect_chunks,
|
collect_chunks,
|
||||||
@@ -93,6 +94,8 @@ class WhisperModel:
|
|||||||
(concurrent calls to self.model.generate() will run in parallel).
|
(concurrent calls to self.model.generate() will run in parallel).
|
||||||
This can improve the global throughput at the cost of increased memory usage.
|
This can improve the global throughput at the cost of increased memory usage.
|
||||||
"""
|
"""
|
||||||
|
self.logger = get_logger()
|
||||||
|
|
||||||
if os.path.isdir(model_size_or_path):
|
if os.path.isdir(model_size_or_path):
|
||||||
model_path = model_size_or_path
|
model_path = model_size_or_path
|
||||||
else:
|
else:
|
||||||
@@ -211,17 +214,40 @@ class WhisperModel:
|
|||||||
- a generator over transcribed segments
|
- a generator over transcribed segments
|
||||||
- an instance of AudioInfo
|
- an instance of AudioInfo
|
||||||
"""
|
"""
|
||||||
if not isinstance(audio, np.ndarray):
|
sampling_rate = self.feature_extractor.sampling_rate
|
||||||
audio = decode_audio(
|
|
||||||
audio, sampling_rate=self.feature_extractor.sampling_rate
|
|
||||||
)
|
|
||||||
|
|
||||||
duration = audio.shape[0] / self.feature_extractor.sampling_rate
|
if not isinstance(audio, np.ndarray):
|
||||||
|
audio = decode_audio(audio, sampling_rate=sampling_rate)
|
||||||
|
|
||||||
|
duration = audio.shape[0] / sampling_rate
|
||||||
|
|
||||||
|
self.logger.info(
|
||||||
|
"Processing audio with duration %s", format_timestamp(duration)
|
||||||
|
)
|
||||||
|
|
||||||
if vad_filter:
|
if vad_filter:
|
||||||
vad_parameters = {} if vad_parameters is None else vad_parameters
|
vad_parameters = {} if vad_parameters is None else vad_parameters
|
||||||
speech_chunks = get_speech_timestamps(audio, **vad_parameters)
|
speech_chunks = get_speech_timestamps(audio, **vad_parameters)
|
||||||
audio = collect_chunks(audio, speech_chunks)
|
audio = collect_chunks(audio, speech_chunks)
|
||||||
|
|
||||||
|
self.logger.info(
|
||||||
|
"VAD filter removed %s of audio",
|
||||||
|
format_timestamp(duration - (audio.shape[0] / sampling_rate)),
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.logger.isEnabledFor(logging.DEBUG):
|
||||||
|
self.logger.debug(
|
||||||
|
"VAD filter kept the following audio segments: %s",
|
||||||
|
", ".join(
|
||||||
|
"[%s -> %s]"
|
||||||
|
% (
|
||||||
|
format_timestamp(chunk["start"] / sampling_rate),
|
||||||
|
format_timestamp(chunk["end"] / sampling_rate),
|
||||||
|
)
|
||||||
|
for chunk in speech_chunks
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
speech_chunks = None
|
speech_chunks = None
|
||||||
|
|
||||||
@@ -239,6 +265,12 @@ class WhisperModel:
|
|||||||
results = self.model.detect_language(encoder_output)
|
results = self.model.detect_language(encoder_output)
|
||||||
language_token, language_probability = results[0][0]
|
language_token, language_probability = results[0][0]
|
||||||
language = language_token[2:-2]
|
language = language_token[2:-2]
|
||||||
|
|
||||||
|
self.logger.info(
|
||||||
|
"Detected language '%s' with probability %.2f",
|
||||||
|
language,
|
||||||
|
language_probability,
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
language_probability = 1
|
language_probability = 1
|
||||||
|
|
||||||
@@ -275,9 +307,7 @@ class WhisperModel:
|
|||||||
segments = self.generate_segments(features, tokenizer, options, encoder_output)
|
segments = self.generate_segments(features, tokenizer, options, encoder_output)
|
||||||
|
|
||||||
if speech_chunks:
|
if speech_chunks:
|
||||||
segments = restore_speech_timestamps(
|
segments = restore_speech_timestamps(segments, speech_chunks, sampling_rate)
|
||||||
segments, speech_chunks, self.feature_extractor.sampling_rate
|
|
||||||
)
|
|
||||||
|
|
||||||
audio_info = AudioInfo(
|
audio_info = AudioInfo(
|
||||||
language=language,
|
language=language,
|
||||||
@@ -312,6 +342,11 @@ class WhisperModel:
|
|||||||
)
|
)
|
||||||
segment_duration = segment_size * self.feature_extractor.time_per_frame
|
segment_duration = segment_size * self.feature_extractor.time_per_frame
|
||||||
|
|
||||||
|
if self.logger.isEnabledFor(logging.DEBUG):
|
||||||
|
self.logger.debug(
|
||||||
|
"Processing segment at %s", format_timestamp(time_offset)
|
||||||
|
)
|
||||||
|
|
||||||
previous_tokens = all_tokens[prompt_reset_since:]
|
previous_tokens = all_tokens[prompt_reset_since:]
|
||||||
prompt = self.get_prompt(
|
prompt = self.get_prompt(
|
||||||
tokenizer,
|
tokenizer,
|
||||||
@@ -339,6 +374,12 @@ class WhisperModel:
|
|||||||
should_skip = False
|
should_skip = False
|
||||||
|
|
||||||
if should_skip:
|
if should_skip:
|
||||||
|
self.logger.debug(
|
||||||
|
"No speech threshold is met (%f > %f)",
|
||||||
|
result.no_speech_prob,
|
||||||
|
options.no_speech_threshold,
|
||||||
|
)
|
||||||
|
|
||||||
# fast-forward to the next segment boundary
|
# fast-forward to the next segment boundary
|
||||||
seek += segment_size
|
seek += segment_size
|
||||||
continue
|
continue
|
||||||
@@ -543,12 +584,26 @@ class WhisperModel:
|
|||||||
):
|
):
|
||||||
needs_fallback = True # too repetitive
|
needs_fallback = True # too repetitive
|
||||||
|
|
||||||
|
self.logger.debug(
|
||||||
|
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
|
||||||
|
temperature,
|
||||||
|
compression_ratio,
|
||||||
|
options.compression_ratio_threshold,
|
||||||
|
)
|
||||||
|
|
||||||
if (
|
if (
|
||||||
options.log_prob_threshold is not None
|
options.log_prob_threshold is not None
|
||||||
and avg_log_prob < options.log_prob_threshold
|
and avg_log_prob < options.log_prob_threshold
|
||||||
):
|
):
|
||||||
needs_fallback = True # average log probability is too low
|
needs_fallback = True # average log probability is too low
|
||||||
|
|
||||||
|
self.logger.debug(
|
||||||
|
"Log probability threshold is not met with temperature %.1f (%f < %f)",
|
||||||
|
temperature,
|
||||||
|
avg_log_prob,
|
||||||
|
options.log_prob_threshold,
|
||||||
|
)
|
||||||
|
|
||||||
if not needs_fallback:
|
if not needs_fallback:
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|||||||
@@ -1,3 +1,4 @@
|
|||||||
|
import logging
|
||||||
import os
|
import os
|
||||||
|
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
@@ -25,6 +26,11 @@ def get_assets_path():
|
|||||||
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
|
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
|
||||||
|
|
||||||
|
|
||||||
|
def get_logger():
|
||||||
|
"""Returns the module logger."""
|
||||||
|
return logging.getLogger("faster_whisper")
|
||||||
|
|
||||||
|
|
||||||
def download_model(size: str, output_dir: Optional[str] = None):
|
def download_model(size: str, output_dir: Optional[str] = None):
|
||||||
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
|
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user