added repetition_penalty to TranscriptionOptions (#403)
Co-authored-by: Aisu Wata <aisu.wata0@gmail.com>
This commit is contained in:
@@ -47,6 +47,7 @@ class TranscriptionOptions(NamedTuple):
|
||||
best_of: int
|
||||
patience: float
|
||||
length_penalty: float
|
||||
repetition_penalty: float
|
||||
log_prob_threshold: Optional[float]
|
||||
no_speech_threshold: Optional[float]
|
||||
compression_ratio_threshold: Optional[float]
|
||||
@@ -160,6 +161,7 @@ class WhisperModel:
|
||||
best_of: int = 5,
|
||||
patience: float = 1,
|
||||
length_penalty: float = 1,
|
||||
repetition_penalty: float = 1,
|
||||
temperature: Union[float, List[float], Tuple[float, ...]] = [
|
||||
0.0,
|
||||
0.2,
|
||||
@@ -197,6 +199,8 @@ class WhisperModel:
|
||||
best_of: Number of candidates when sampling with non-zero temperature.
|
||||
patience: Beam search patience factor.
|
||||
length_penalty: Exponential length penalty constant.
|
||||
repetition_penalty: Penalty applied to the score of previously generated tokens
|
||||
(set > 1 to penalize).
|
||||
temperature: Temperature for sampling. It can be a tuple of temperatures,
|
||||
which will be successively used upon failures according to either
|
||||
`compression_ratio_threshold` or `log_prob_threshold`.
|
||||
@@ -319,6 +323,7 @@ class WhisperModel:
|
||||
best_of=best_of,
|
||||
patience=patience,
|
||||
length_penalty=length_penalty,
|
||||
repetition_penalty=repetition_penalty,
|
||||
log_prob_threshold=log_prob_threshold,
|
||||
no_speech_threshold=no_speech_threshold,
|
||||
compression_ratio_threshold=compression_ratio_threshold,
|
||||
@@ -620,6 +625,7 @@ class WhisperModel:
|
||||
encoder_output,
|
||||
[prompt],
|
||||
length_penalty=options.length_penalty,
|
||||
repetition_penalty=options.repetition_penalty,
|
||||
max_length=self.max_length,
|
||||
return_scores=True,
|
||||
return_no_speech_prob=True,
|
||||
|
||||
Reference in New Issue
Block a user