Improve language detection (#732)
This commit is contained in:
@@ -220,6 +220,8 @@ class WhisperModel:
|
||||
chunk_length: Optional[int] = None,
|
||||
clip_timestamps: Union[str, List[float]] = "0",
|
||||
hallucination_silence_threshold: Optional[float] = None,
|
||||
language_detection_threshold: Optional[float] = None,
|
||||
language_detection_segments: int = 1,
|
||||
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
|
||||
"""Transcribes an input file.
|
||||
|
||||
@@ -281,6 +283,9 @@ class WhisperModel:
|
||||
hallucination_silence_threshold: Optional[float]
|
||||
When word_timestamps is True, skip silent periods longer than this threshold
|
||||
(in seconds) when a possible hallucination is detected
|
||||
language_detection_threshold: If the maximum probability of the language tokens is higher
|
||||
than this value, the language is detected.
|
||||
language_detection_segments: Number of segments to consider for the language detection.
|
||||
|
||||
Returns:
|
||||
A tuple with:
|
||||
@@ -340,15 +345,51 @@ class WhisperModel:
|
||||
language = "en"
|
||||
language_probability = 1
|
||||
else:
|
||||
segment = features[:, : self.feature_extractor.nb_max_frames]
|
||||
encoder_output = self.encode(segment)
|
||||
# results is a list of tuple[str, float] with language names and
|
||||
# probabilities.
|
||||
results = self.model.detect_language(encoder_output)[0]
|
||||
# Parse language names to strip out markers
|
||||
all_language_probs = [(token[2:-2], prob) for (token, prob) in results]
|
||||
# Get top language token and probability
|
||||
language, language_probability = all_language_probs[0]
|
||||
if (
|
||||
language_detection_segments is None
|
||||
or language_detection_segments < 1
|
||||
):
|
||||
language_detection_segments = 1
|
||||
seek = 0
|
||||
detected_language_info = {}
|
||||
content_frames = (
|
||||
features.shape[-1] - self.feature_extractor.nb_max_frames
|
||||
)
|
||||
while (
|
||||
seek < content_frames
|
||||
and seek
|
||||
< self.feature_extractor.nb_max_frames * language_detection_segments
|
||||
):
|
||||
segment = features[
|
||||
:, seek : seek + self.feature_extractor.nb_max_frames
|
||||
]
|
||||
encoder_output = self.encode(segment)
|
||||
# results is a list of tuple[str, float] with language names and
|
||||
# probabilities.
|
||||
results = self.model.detect_language(encoder_output)[0]
|
||||
# Parse language names to strip out markers
|
||||
all_language_probs = [
|
||||
(token[2:-2], prob) for (token, prob) in results
|
||||
]
|
||||
# Get top language token and probability
|
||||
language, language_probability = all_language_probs[0]
|
||||
if (
|
||||
language_detection_threshold is None
|
||||
or language_probability > language_detection_threshold
|
||||
):
|
||||
break
|
||||
detected_language_info.setdefault(language, []).append(
|
||||
language_probability
|
||||
)
|
||||
seek += segment.shape[-1]
|
||||
else:
|
||||
# If no language detected for all segments, the majority vote of the highest
|
||||
# projected languages for all segments is used to determine the language.
|
||||
language = max(
|
||||
detected_language_info,
|
||||
key=lambda lang: len(detected_language_info[lang]),
|
||||
)
|
||||
language_probability = max(detected_language_info[language])
|
||||
|
||||
self.logger.info(
|
||||
"Detected language '%s' with probability %.2f",
|
||||
|
||||
Reference in New Issue
Block a user