Revert "Merge remote-tracking branch 'upstream/master' into prompt"
This reverts commit6e42088656, reversing changes made to4a59bb011d.
This commit is contained in:
@@ -1,4 +1,3 @@
|
||||
include faster_whisper/assets/silero_vad.onnx
|
||||
include requirements.txt
|
||||
include requirements.conversion.txt
|
||||
include faster_whisper/assets/pyannote_vad_model.bin
|
||||
|
||||
30
README.md
30
README.md
@@ -69,6 +69,7 @@ segments, info = model.transcribe("audio.mp3", beam_size=5, language="en")
|
||||
|
||||
* Python 3.8 or greater
|
||||
|
||||
Unlike openai-whisper, FFmpeg does **not** need to be installed on the system. The audio is decoded with the Python library [PyAV](https://github.com/PyAV-Org/PyAV) which bundles the FFmpeg libraries in its package.
|
||||
|
||||
### GPU
|
||||
|
||||
@@ -165,35 +166,6 @@ for segment in segments:
|
||||
segments, _ = model.transcribe("audio.mp3")
|
||||
segments = list(segments) # The transcription will actually run here.
|
||||
```
|
||||
|
||||
### multi-segment language detection
|
||||
|
||||
To directly use the model for improved language detection, the following code snippet can be used:
|
||||
|
||||
```python
|
||||
from faster_whisper import WhisperModel
|
||||
model = WhisperModel("medium", device="cuda", compute_type="float16")
|
||||
language_info = model.detect_language_multi_segment("audio.mp3")
|
||||
```
|
||||
|
||||
### Batched faster-whisper
|
||||
|
||||
|
||||
The batched version of faster-whisper is inspired by [whisper-x](https://github.com/m-bain/whisperX) licensed under the BSD-2 Clause license and integrates its VAD model to this library. We modify this implementation and also replaced the feature extraction with a faster torch-based implementation. Batched version improves the speed upto 10-12x compared to openAI implementation and 3-4x compared to the sequential faster_whisper version. It works by transcribing semantically meaningful audio chunks as batches leading to faster inference.
|
||||
|
||||
The following code snippet illustrates how to run inference with batched version on an example audio file. Please also refer to the test scripts of batched faster whisper.
|
||||
|
||||
```python
|
||||
from faster_whisper import WhisperModel, BatchedInferencePipeline
|
||||
|
||||
model = WhisperModel("medium", device="cuda", compute_type="float16")
|
||||
batched_model = BatchedInferencePipeline(model=model)
|
||||
segments, info = batched_model.transcribe("audio.mp3", batch_size=16)
|
||||
|
||||
for segment in segments:
|
||||
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
||||
```
|
||||
|
||||
### Faster Distil-Whisper
|
||||
|
||||
The Distil-Whisper checkpoints are compatible with the Faster-Whisper package. In particular, the latest [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
from datasets import load_dataset
|
||||
from evaluate import load
|
||||
@@ -27,9 +26,7 @@ dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming
|
||||
|
||||
# define the evaluation metric
|
||||
wer_metric = load("wer")
|
||||
|
||||
with open(os.path.join(os.path.dirname(__file__), "normalizer.json"), "r") as f:
|
||||
normalizer = EnglishTextNormalizer(json.load(f))
|
||||
normalizer = EnglishTextNormalizer(json.load(open("normalizer.json")))
|
||||
|
||||
|
||||
def inference(batch):
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
from faster_whisper.audio import decode_audio
|
||||
from faster_whisper.transcribe import BatchedInferencePipeline, WhisperModel
|
||||
from faster_whisper.transcribe import WhisperModel
|
||||
from faster_whisper.utils import available_models, download_model, format_timestamp
|
||||
from faster_whisper.version import __version__
|
||||
|
||||
@@ -7,7 +7,6 @@ __all__ = [
|
||||
"available_models",
|
||||
"decode_audio",
|
||||
"WhisperModel",
|
||||
"BatchedInferencePipeline",
|
||||
"download_model",
|
||||
"format_timestamp",
|
||||
"__version__",
|
||||
|
||||
Binary file not shown.
@@ -1,7 +1,19 @@
|
||||
"""We use the PyAV library to decode the audio: https://github.com/PyAV-Org/PyAV
|
||||
|
||||
The advantage of PyAV is that it bundles the FFmpeg libraries so there is no additional
|
||||
system dependencies. FFmpeg does not need to be installed on the system.
|
||||
|
||||
However, the API is quite low-level so we need to manipulate audio frames directly.
|
||||
"""
|
||||
|
||||
import gc
|
||||
import io
|
||||
import itertools
|
||||
|
||||
from typing import BinaryIO, Union
|
||||
|
||||
import torch
|
||||
import torchaudio
|
||||
import av
|
||||
import numpy as np
|
||||
|
||||
|
||||
def decode_audio(
|
||||
@@ -17,42 +29,91 @@ def decode_audio(
|
||||
split_stereo: Return separate left and right channels.
|
||||
|
||||
Returns:
|
||||
A float32 Torch Tensor.
|
||||
A float32 Numpy array.
|
||||
|
||||
If `split_stereo` is enabled, the function returns a 2-tuple with the
|
||||
separated left and right channels.
|
||||
"""
|
||||
|
||||
waveform, audio_sf = torchaudio.load(input_file) # waveform: channels X T
|
||||
|
||||
if audio_sf != sampling_rate:
|
||||
waveform = torchaudio.functional.resample(
|
||||
waveform, orig_freq=audio_sf, new_freq=sampling_rate
|
||||
resampler = av.audio.resampler.AudioResampler(
|
||||
format="s16",
|
||||
layout="mono" if not split_stereo else "stereo",
|
||||
rate=sampling_rate,
|
||||
)
|
||||
if split_stereo:
|
||||
return waveform[0], waveform[1]
|
||||
|
||||
return waveform.mean(0)
|
||||
raw_buffer = io.BytesIO()
|
||||
dtype = None
|
||||
|
||||
with av.open(input_file, mode="r", metadata_errors="ignore") as container:
|
||||
frames = container.decode(audio=0)
|
||||
frames = _ignore_invalid_frames(frames)
|
||||
frames = _group_frames(frames, 500000)
|
||||
frames = _resample_frames(frames, resampler)
|
||||
|
||||
for frame in frames:
|
||||
array = frame.to_ndarray()
|
||||
dtype = array.dtype
|
||||
raw_buffer.write(array)
|
||||
|
||||
# It appears that some objects related to the resampler are not freed
|
||||
# unless the garbage collector is manually run.
|
||||
del resampler
|
||||
gc.collect()
|
||||
|
||||
audio = np.frombuffer(raw_buffer.getbuffer(), dtype=dtype)
|
||||
|
||||
# Convert s16 back to f32.
|
||||
audio = audio.astype(np.float32) / 32768.0
|
||||
|
||||
if split_stereo:
|
||||
left_channel = audio[0::2]
|
||||
right_channel = audio[1::2]
|
||||
return left_channel, right_channel
|
||||
|
||||
return audio
|
||||
|
||||
|
||||
def _ignore_invalid_frames(frames):
|
||||
iterator = iter(frames)
|
||||
|
||||
while True:
|
||||
try:
|
||||
yield next(iterator)
|
||||
except StopIteration:
|
||||
break
|
||||
except av.error.InvalidDataError:
|
||||
continue
|
||||
|
||||
|
||||
def _group_frames(frames, num_samples=None):
|
||||
fifo = av.audio.fifo.AudioFifo()
|
||||
|
||||
for frame in frames:
|
||||
frame.pts = None # Ignore timestamp check.
|
||||
fifo.write(frame)
|
||||
|
||||
if num_samples is not None and fifo.samples >= num_samples:
|
||||
yield fifo.read()
|
||||
|
||||
if fifo.samples > 0:
|
||||
yield fifo.read()
|
||||
|
||||
|
||||
def _resample_frames(frames, resampler):
|
||||
# Add None to flush the resampler.
|
||||
for frame in itertools.chain(frames, [None]):
|
||||
yield from resampler.resample(frame)
|
||||
|
||||
|
||||
def pad_or_trim(array, length: int, *, axis: int = -1):
|
||||
"""
|
||||
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
|
||||
"""
|
||||
axis = axis % array.ndim
|
||||
if array.shape[axis] > length:
|
||||
idx = [Ellipsis] * axis + [slice(length)] + [Ellipsis] * (array.ndim - axis - 1)
|
||||
return array[idx]
|
||||
array = array.take(indices=range(length), axis=axis)
|
||||
|
||||
if array.shape[axis] < length:
|
||||
pad_widths = (
|
||||
[
|
||||
0,
|
||||
]
|
||||
* array.ndim
|
||||
* 2
|
||||
)
|
||||
pad_widths[2 * axis] = length - array.shape[axis]
|
||||
array = torch.nn.functional.pad(array, tuple(pad_widths[::-1]))
|
||||
pad_widths = [(0, 0)] * array.ndim
|
||||
pad_widths[axis] = (0, length - array.shape[axis])
|
||||
array = np.pad(array, pad_widths)
|
||||
|
||||
return array
|
||||
|
||||
@@ -1,21 +1,16 @@
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
|
||||
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/feature_extraction_whisper.py # noqa: E501
|
||||
class FeatureExtractor:
|
||||
def __init__(
|
||||
self,
|
||||
device: str = "auto",
|
||||
feature_size=80,
|
||||
sampling_rate=16000,
|
||||
hop_length=160,
|
||||
chunk_length=30,
|
||||
n_fft=400,
|
||||
):
|
||||
if device == "auto":
|
||||
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
else:
|
||||
self.device = device
|
||||
self.n_fft = n_fft
|
||||
self.hop_length = hop_length
|
||||
self.chunk_length = chunk_length
|
||||
@@ -27,22 +22,21 @@ class FeatureExtractor:
|
||||
sampling_rate, n_fft, n_mels=feature_size
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def get_mel_filters(sr, n_fft, n_mels=128):
|
||||
"""
|
||||
Implementation of librosa.filters.mel in Pytorch
|
||||
"""
|
||||
def get_mel_filters(self, sr, n_fft, n_mels=128, dtype=np.float32):
|
||||
# Initialize the weights
|
||||
n_mels = int(n_mels)
|
||||
weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)
|
||||
|
||||
# Center freqs of each FFT bin
|
||||
fftfreqs = torch.fft.rfftfreq(n=n_fft, d=1.0 / sr)
|
||||
fftfreqs = np.fft.rfftfreq(n=n_fft, d=1.0 / sr)
|
||||
|
||||
# 'Center freqs' of mel bands - uniformly spaced between limits
|
||||
min_mel = 0.0
|
||||
max_mel = 45.245640471924965
|
||||
|
||||
mels = torch.linspace(min_mel, max_mel, n_mels + 2)
|
||||
mels = np.linspace(min_mel, max_mel, n_mels + 2)
|
||||
|
||||
mels = np.asanyarray(mels)
|
||||
|
||||
# Fill in the linear scale
|
||||
f_min = 0.0
|
||||
@@ -52,63 +46,125 @@ class FeatureExtractor:
|
||||
# And now the nonlinear scale
|
||||
min_log_hz = 1000.0 # beginning of log region (Hz)
|
||||
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
|
||||
logstep = torch.log(torch.tensor(6.4)) / 27.0 # step size for log region
|
||||
logstep = np.log(6.4) / 27.0 # step size for log region
|
||||
|
||||
# If we have vector data, vectorize
|
||||
log_t = mels >= min_log_mel
|
||||
freqs[log_t] = min_log_hz * torch.exp(logstep * (mels[log_t] - min_log_mel))
|
||||
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
|
||||
|
||||
mel_f = freqs
|
||||
|
||||
fdiff = torch.diff(mel_f)
|
||||
ramps = mel_f.view(-1, 1) - fftfreqs.view(1, -1)
|
||||
fdiff = np.diff(mel_f)
|
||||
ramps = np.subtract.outer(mel_f, fftfreqs)
|
||||
|
||||
lower = -ramps[:-2] / fdiff[:-1].unsqueeze(1)
|
||||
upper = ramps[2:] / fdiff[1:].unsqueeze(1)
|
||||
for i in range(n_mels):
|
||||
# lower and upper slopes for all bins
|
||||
lower = -ramps[i] / fdiff[i]
|
||||
upper = ramps[i + 2] / fdiff[i + 1]
|
||||
|
||||
# Intersect them with each other and zero, vectorized across all i
|
||||
weights = torch.maximum(torch.zeros_like(lower), torch.minimum(lower, upper))
|
||||
# .. then intersect them with each other and zero
|
||||
weights[i] = np.maximum(0, np.minimum(lower, upper))
|
||||
|
||||
# Slaney-style mel is scaled to be approx constant energy per channel
|
||||
enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
|
||||
weights *= enorm.unsqueeze(1)
|
||||
weights *= enorm[:, np.newaxis]
|
||||
|
||||
return weights
|
||||
|
||||
def __call__(self, waveform, padding=True, chunk_length=None, to_cpu=False):
|
||||
def fram_wave(self, waveform, center=True):
|
||||
"""
|
||||
Compute the log-Mel spectrogram of the provided audio.
|
||||
Transform a raw waveform into a list of smaller waveforms.
|
||||
The window length defines how much of the signal is
|
||||
contain in each frame (smalle waveform), while the hope length defines the step
|
||||
between the beginning of each new frame.
|
||||
Centering is done by reflecting the waveform which is first centered around
|
||||
`frame_idx * hop_length`.
|
||||
"""
|
||||
frames = []
|
||||
for i in range(0, waveform.shape[0] + 1, self.hop_length):
|
||||
half_window = (self.n_fft - 1) // 2 + 1
|
||||
if center:
|
||||
start = i - half_window if i > half_window else 0
|
||||
end = (
|
||||
i + half_window
|
||||
if i < waveform.shape[0] - half_window
|
||||
else waveform.shape[0]
|
||||
)
|
||||
|
||||
frame = waveform[start:end]
|
||||
|
||||
if start == 0:
|
||||
padd_width = (-i + half_window, 0)
|
||||
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
||||
|
||||
elif end == waveform.shape[0]:
|
||||
padd_width = (0, (i - waveform.shape[0] + half_window))
|
||||
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
||||
|
||||
else:
|
||||
frame = waveform[i : i + self.n_fft]
|
||||
frame_width = frame.shape[0]
|
||||
if frame_width < waveform.shape[0]:
|
||||
frame = np.lib.pad(
|
||||
frame,
|
||||
pad_width=(0, self.n_fft - frame_width),
|
||||
mode="constant",
|
||||
constant_values=0,
|
||||
)
|
||||
|
||||
frames.append(frame)
|
||||
return np.stack(frames, 0)
|
||||
|
||||
def stft(self, frames, window):
|
||||
"""
|
||||
Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal.
|
||||
Should give the same results as `torch.stft`.
|
||||
"""
|
||||
frame_size = frames.shape[1]
|
||||
fft_size = self.n_fft
|
||||
|
||||
if fft_size is None:
|
||||
fft_size = frame_size
|
||||
|
||||
if fft_size < frame_size:
|
||||
raise ValueError("FFT size must greater or equal the frame size")
|
||||
# number of FFT bins to store
|
||||
num_fft_bins = (fft_size >> 1) + 1
|
||||
|
||||
data = np.empty((len(frames), num_fft_bins), dtype=np.complex64)
|
||||
fft_signal = np.zeros(fft_size)
|
||||
|
||||
for f, frame in enumerate(frames):
|
||||
if window is not None:
|
||||
np.multiply(frame, window, out=fft_signal[:frame_size])
|
||||
else:
|
||||
fft_signal[:frame_size] = frame
|
||||
data[f] = np.fft.fft(fft_signal, axis=0)[:num_fft_bins]
|
||||
return data.T
|
||||
|
||||
def __call__(self, waveform, padding=True, chunk_length=None):
|
||||
"""
|
||||
Compute the log-Mel spectrogram of the provided audio, gives similar results
|
||||
whisper's original torch implementation with 1e-5 tolerance.
|
||||
"""
|
||||
if chunk_length is not None:
|
||||
self.n_samples = chunk_length * self.sampling_rate
|
||||
self.nb_max_frames = self.n_samples // self.hop_length
|
||||
|
||||
if waveform.dtype is not torch.float32:
|
||||
waveform = waveform.to(torch.float32)
|
||||
|
||||
waveform = (
|
||||
waveform.to(self.device)
|
||||
if self.device == "cuda" and not waveform.is_cuda
|
||||
else waveform
|
||||
)
|
||||
|
||||
if padding:
|
||||
waveform = torch.nn.functional.pad(waveform, (0, self.n_samples))
|
||||
waveform = np.pad(waveform, [(0, self.n_samples)])
|
||||
|
||||
window = torch.hann_window(self.n_fft).to(waveform.device)
|
||||
window = np.hanning(self.n_fft + 1)[:-1]
|
||||
|
||||
stft = torch.stft(
|
||||
waveform, self.n_fft, self.hop_length, window=window, return_complex=True
|
||||
)
|
||||
magnitudes = stft[..., :-1].abs() ** 2
|
||||
frames = self.fram_wave(waveform)
|
||||
stft = self.stft(frames, window=window)
|
||||
magnitudes = np.abs(stft[:, :-1]) ** 2
|
||||
|
||||
mel_spec = self.mel_filters.to(waveform.device) @ magnitudes
|
||||
filters = self.mel_filters
|
||||
mel_spec = filters @ magnitudes
|
||||
|
||||
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
|
||||
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
|
||||
log_spec = np.log10(np.clip(mel_spec, a_min=1e-10, a_max=None))
|
||||
log_spec = np.maximum(log_spec, log_spec.max() - 8.0)
|
||||
log_spec = (log_spec + 4.0) / 4.0
|
||||
|
||||
# When the model is running on multiple GPUs, the output should be moved
|
||||
# to the CPU since we don't know which GPU will handle the next job.
|
||||
return log_spec.cpu() if to_cpu else log_spec
|
||||
return log_spec
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -2,17 +2,9 @@ import bisect
|
||||
import functools
|
||||
import os
|
||||
|
||||
from abc import ABC
|
||||
from collections.abc import Callable
|
||||
from typing import List, NamedTuple, Optional, Union
|
||||
from typing import List, NamedTuple, Optional
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
from pyannote.audio.core.io import AudioFile
|
||||
from pyannote.audio.pipelines import VoiceActivityDetection
|
||||
from pyannote.audio.pipelines.utils import PipelineModel
|
||||
from pyannote.core import Annotation, Segment, SlidingWindowFeature
|
||||
|
||||
from faster_whisper.utils import get_assets_path
|
||||
|
||||
@@ -43,7 +35,7 @@ class VadOptions(NamedTuple):
|
||||
|
||||
|
||||
def get_speech_timestamps(
|
||||
audio: torch.Tensor,
|
||||
audio: np.ndarray,
|
||||
vad_options: Optional[VadOptions] = None,
|
||||
**kwargs,
|
||||
) -> List[dict]:
|
||||
@@ -184,12 +176,12 @@ def get_speech_timestamps(
|
||||
return speeches
|
||||
|
||||
|
||||
def collect_chunks(audio: torch.Tensor, chunks: List[dict]) -> torch.Tensor:
|
||||
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
||||
"""Collects and concatenates audio chunks."""
|
||||
if not chunks:
|
||||
return torch.tensor([], dtype=torch.float32)
|
||||
return np.array([], dtype=np.float32)
|
||||
|
||||
return torch.cat([audio[chunk["start"] : chunk["end"]] for chunk in chunks])
|
||||
return np.concatenate([audio[chunk["start"] : chunk["end"]] for chunk in chunks])
|
||||
|
||||
|
||||
class SpeechTimestampsMap:
|
||||
@@ -284,313 +276,3 @@ class SileroVADModel:
|
||||
context = x[..., -64:]
|
||||
|
||||
return out, state, context
|
||||
|
||||
|
||||
# BSD 2-Clause License
|
||||
|
||||
# Copyright (c) 2024, Max Bain
|
||||
|
||||
# Redistribution and use in source and binary forms, with or without
|
||||
# modification, are permitted provided that the following conditions are met:
|
||||
|
||||
# 1. Redistributions of source code must retain the above copyright notice, this
|
||||
# list of conditions and the following disclaimer.
|
||||
|
||||
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
# this list of conditions and the following disclaimer in the documentation
|
||||
# and/or other materials provided with the distribution.
|
||||
|
||||
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
|
||||
|
||||
# The code below is copied from whisper-x (https://github.com/m-bain/whisperX)
|
||||
# and adapted for faster_whisper.
|
||||
class SegmentX:
|
||||
def __init__(self, start, end, speaker=None):
|
||||
self.start = start
|
||||
self.end = end
|
||||
self.speaker = speaker
|
||||
|
||||
|
||||
class VoiceActivitySegmentation(VoiceActivityDetection, ABC):
|
||||
"""Pipeline wrapper class for Voice Activity Segmentation based on VAD scores."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
segmentation: PipelineModel = "pyannote/segmentation",
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
fscore: bool = False,
|
||||
use_auth_token: Optional[str] = None,
|
||||
**inference_kwargs,
|
||||
):
|
||||
"""Initialize the pipeline with the model name and the optional device.
|
||||
|
||||
Args:
|
||||
dict parameters of VoiceActivityDetection class from pyannote:
|
||||
segmentation (PipelineModel): Loaded model name.
|
||||
device (torch.device or None): Device to perform the segmentation.
|
||||
fscore (bool): Flag indicating whether to compute F-score during inference.
|
||||
use_auth_token (str or None): Optional authentication token for model access.
|
||||
inference_kwargs (dict): Additional arguments from VoiceActivityDetection pipeline.
|
||||
"""
|
||||
super().__init__(
|
||||
segmentation=segmentation,
|
||||
device=device,
|
||||
fscore=fscore,
|
||||
use_auth_token=use_auth_token,
|
||||
**inference_kwargs,
|
||||
)
|
||||
|
||||
def apply(
|
||||
self, file: AudioFile, hook: Optional[Callable] = None
|
||||
) -> SlidingWindowFeature:
|
||||
"""Apply voice activity detection on the audio file.
|
||||
|
||||
Args:
|
||||
file (AudioFile): Processed file.
|
||||
hook (callable): Hook called with signature: hook("step_name", step_artefact, file=file)
|
||||
|
||||
Returns:
|
||||
segmentations (SlidingWindowFeature): Voice activity segmentation.
|
||||
"""
|
||||
# setup hook (e.g. for debugging purposes)
|
||||
hook = self.setup_hook(file, hook=hook)
|
||||
|
||||
# apply segmentation model if needed
|
||||
# output shape is (num_chunks, num_frames, 1)
|
||||
if self.training:
|
||||
if self.CACHED_SEGMENTATION in file:
|
||||
segmentations = file[self.CACHED_SEGMENTATION]
|
||||
else:
|
||||
segmentations = self._segmentation(file)
|
||||
file[self.CACHED_SEGMENTATION] = segmentations
|
||||
else:
|
||||
segmentations: SlidingWindowFeature = self._segmentation(file)
|
||||
|
||||
return segmentations
|
||||
|
||||
|
||||
class BinarizeVadScores:
|
||||
"""Binarize detection scores using hysteresis thresholding.
|
||||
|
||||
Reference:
|
||||
Gregory Gelly and Jean-Luc Gauvain. "Minimum Word Error Training of
|
||||
RNN-based Voice Activity Detection", InterSpeech 2015.
|
||||
|
||||
Modified by Max Bain to include WhisperX's min-cut operation
|
||||
https://arxiv.org/abs/2303.00747
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
onset: float = 0.5,
|
||||
offset: Optional[float] = None,
|
||||
min_duration_on: float = 0.0,
|
||||
min_duration_off: float = 0.0,
|
||||
pad_onset: float = 0.0,
|
||||
pad_offset: float = 0.0,
|
||||
max_duration: float = float("inf"),
|
||||
):
|
||||
"""Initializes the parameters for Binarizing the VAD scores.
|
||||
|
||||
Args:
|
||||
onset (float, optional):
|
||||
Onset threshold. Defaults to 0.5.
|
||||
offset (float, optional):
|
||||
Offset threshold. Defaults to `onset`.
|
||||
min_duration_on (float, optional):
|
||||
Remove active regions shorter than that many seconds. Defaults to 0s.
|
||||
min_duration_off (float, optional):
|
||||
Fill inactive regions shorter than that many seconds. Defaults to 0s.
|
||||
pad_onset (float, optional):
|
||||
Extend active regions by moving their start time by that many seconds.
|
||||
Defaults to 0s.
|
||||
pad_offset (float, optional):
|
||||
Extend active regions by moving their end time by that many seconds.
|
||||
Defaults to 0s.
|
||||
max_duration (float):
|
||||
The maximum length of an active segment.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.onset = onset
|
||||
self.offset = offset or onset
|
||||
|
||||
self.pad_onset = pad_onset
|
||||
self.pad_offset = pad_offset
|
||||
|
||||
self.min_duration_on = min_duration_on
|
||||
self.min_duration_off = min_duration_off
|
||||
|
||||
self.max_duration = max_duration
|
||||
|
||||
def __get_active_regions(self, scores: SlidingWindowFeature) -> Annotation:
|
||||
"""Extract active regions from VAD scores.
|
||||
|
||||
Args:
|
||||
scores (SlidingWindowFeature): Detection scores.
|
||||
|
||||
Returns:
|
||||
active (Annotation): Active regions.
|
||||
"""
|
||||
num_frames, num_classes = scores.data.shape
|
||||
frames = scores.sliding_window
|
||||
timestamps = [frames[i].middle for i in range(num_frames)]
|
||||
# annotation meant to store 'active' regions
|
||||
active = Annotation()
|
||||
for k, k_scores in enumerate(scores.data.T):
|
||||
label = k if scores.labels is None else scores.labels[k]
|
||||
|
||||
# initial state
|
||||
start = timestamps[0]
|
||||
is_active = k_scores[0] > self.onset
|
||||
curr_scores = [k_scores[0]]
|
||||
curr_timestamps = [start]
|
||||
t = start
|
||||
# optionally add `strict=False` for python 3.10 or later
|
||||
for t, y in zip(timestamps[1:], k_scores[1:]):
|
||||
# currently active
|
||||
if is_active:
|
||||
curr_duration = t - start
|
||||
if curr_duration > self.max_duration:
|
||||
search_after = len(curr_scores) // 2
|
||||
# divide segment
|
||||
min_score_div_idx = search_after + np.argmin(
|
||||
curr_scores[search_after:]
|
||||
)
|
||||
min_score_t = curr_timestamps[min_score_div_idx]
|
||||
region = Segment(
|
||||
start - self.pad_onset, min_score_t + self.pad_offset
|
||||
)
|
||||
active[region, k] = label
|
||||
start = curr_timestamps[min_score_div_idx]
|
||||
curr_scores = curr_scores[min_score_div_idx + 1 :]
|
||||
curr_timestamps = curr_timestamps[min_score_div_idx + 1 :]
|
||||
# switching from active to inactive
|
||||
elif y < self.offset:
|
||||
region = Segment(start - self.pad_onset, t + self.pad_offset)
|
||||
active[region, k] = label
|
||||
start = t
|
||||
is_active = False
|
||||
curr_scores = []
|
||||
curr_timestamps = []
|
||||
curr_scores.append(y)
|
||||
curr_timestamps.append(t)
|
||||
# currently inactive
|
||||
else:
|
||||
# switching from inactive to active
|
||||
if y > self.onset:
|
||||
start = t
|
||||
is_active = True
|
||||
|
||||
# if active at the end, add final region
|
||||
if is_active:
|
||||
region = Segment(start - self.pad_onset, t + self.pad_offset)
|
||||
active[region, k] = label
|
||||
|
||||
return active
|
||||
|
||||
def __call__(self, scores: SlidingWindowFeature) -> Annotation:
|
||||
"""Binarize detection scores.
|
||||
|
||||
Args:
|
||||
scores (SlidingWindowFeature): Detection scores.
|
||||
|
||||
Returns:
|
||||
active (Annotation): Binarized scores.
|
||||
"""
|
||||
active = self.__get_active_regions(scores)
|
||||
# because of padding, some active regions might be overlapping: merge them.
|
||||
# also: fill same speaker gaps shorter than min_duration_off
|
||||
if self.pad_offset > 0.0 or self.pad_onset > 0.0 or self.min_duration_off > 0.0:
|
||||
if self.max_duration < float("inf"):
|
||||
raise NotImplementedError("This would break current max_duration param")
|
||||
active = active.support(collar=self.min_duration_off)
|
||||
|
||||
# remove tracks shorter than min_duration_on
|
||||
if self.min_duration_on > 0:
|
||||
for segment, track in list(active.itertracks()):
|
||||
if segment.duration < self.min_duration_on:
|
||||
del active[segment, track]
|
||||
|
||||
return active
|
||||
|
||||
|
||||
def merge_chunks(
|
||||
segments,
|
||||
chunk_length,
|
||||
onset: float = 0.5,
|
||||
offset: Optional[float] = None,
|
||||
edge_padding: float = 0.1,
|
||||
):
|
||||
"""
|
||||
Merge operation described in whisper-x paper
|
||||
"""
|
||||
curr_end = 0
|
||||
merged_segments = []
|
||||
seg_idxs = []
|
||||
speaker_idxs = []
|
||||
|
||||
assert chunk_length > 0
|
||||
binarize = BinarizeVadScores(max_duration=chunk_length, onset=onset, offset=offset)
|
||||
segments = binarize(segments)
|
||||
segments_list = []
|
||||
for speech_turn in segments.get_timeline():
|
||||
segments_list.append(
|
||||
SegmentX(
|
||||
max(0.0, speech_turn.start - edge_padding),
|
||||
speech_turn.end + edge_padding,
|
||||
"UNKNOWN",
|
||||
)
|
||||
) # 100ms edge padding to account for edge errors
|
||||
|
||||
if len(segments_list) == 0:
|
||||
print("No active speech found in audio")
|
||||
return []
|
||||
|
||||
# Make sur the starting point is the start of the segment.
|
||||
curr_start = segments_list[0].start
|
||||
|
||||
for idx, seg in enumerate(segments_list):
|
||||
# if any segment start timing is less than previous segment end timing,
|
||||
# reset the edge padding. Similarly for end timing.
|
||||
if idx > 0:
|
||||
if seg.start < segments_list[idx - 1].end:
|
||||
seg.start += edge_padding
|
||||
if idx < len(segments_list) - 1:
|
||||
if seg.end > segments_list[idx + 1].start:
|
||||
seg.end -= edge_padding
|
||||
|
||||
if seg.end - curr_start > chunk_length and curr_end - curr_start > 0:
|
||||
merged_segments.append(
|
||||
{
|
||||
"start": curr_start,
|
||||
"end": curr_end,
|
||||
"segments": seg_idxs,
|
||||
}
|
||||
)
|
||||
curr_start = seg.start
|
||||
seg_idxs = []
|
||||
speaker_idxs = []
|
||||
curr_end = seg.end
|
||||
seg_idxs.append((seg.start, seg.end))
|
||||
speaker_idxs.append(seg.speaker)
|
||||
# add final
|
||||
merged_segments.append(
|
||||
{
|
||||
"start": curr_start,
|
||||
"end": curr_end,
|
||||
"segments": seg_idxs,
|
||||
}
|
||||
)
|
||||
return merged_segments
|
||||
|
||||
@@ -1,8 +1,5 @@
|
||||
av>=11.0,<13
|
||||
ctranslate2>=4.0,<5
|
||||
huggingface_hub>=0.13
|
||||
tokenizers>=0.13,<1
|
||||
onnxruntime>=1.14,<2
|
||||
pyannote-audio>=3.1.1
|
||||
torch>=2.1.1
|
||||
torchaudio>=2.1.2
|
||||
tqdm
|
||||
@@ -11,8 +11,3 @@ def data_dir():
|
||||
@pytest.fixture
|
||||
def jfk_path(data_dir):
|
||||
return os.path.join(data_dir, "jfk.flac")
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def physcisworks_path(data_dir):
|
||||
return os.path.join(data_dir, "physicsworks.wav")
|
||||
|
||||
Binary file not shown.
@@ -1,6 +1,6 @@
|
||||
import os
|
||||
|
||||
from faster_whisper import BatchedInferencePipeline, WhisperModel, decode_audio
|
||||
from faster_whisper import WhisperModel, decode_audio
|
||||
from faster_whisper.tokenizer import Tokenizer
|
||||
from faster_whisper.transcribe import get_suppressed_tokens
|
||||
|
||||
@@ -39,50 +39,6 @@ def test_transcribe(jfk_path):
|
||||
assert segment.text == "".join(word.word for word in segment.words)
|
||||
assert segment.start == segment.words[0].start
|
||||
assert segment.end == segment.words[-1].end
|
||||
batched_model = BatchedInferencePipeline(model=model, use_vad_model=False)
|
||||
result, info = batched_model.transcribe(jfk_path, word_timestamps=True)
|
||||
assert info.language == "en"
|
||||
assert info.language_probability > 0.7
|
||||
segments = []
|
||||
for segment in result:
|
||||
segments.append(
|
||||
{"start": segment.start, "end": segment.end, "text": segment.text}
|
||||
)
|
||||
|
||||
assert len(segments) == 1
|
||||
assert segment.text == (
|
||||
" And so my fellow Americans ask not what your country can do for you, "
|
||||
"ask what you can do for your country."
|
||||
)
|
||||
|
||||
|
||||
def test_batched_transcribe(physcisworks_path):
|
||||
model = WhisperModel("tiny")
|
||||
batched_model = BatchedInferencePipeline(model=model)
|
||||
result, info = batched_model.transcribe(physcisworks_path, batch_size=16)
|
||||
assert info.language == "en"
|
||||
assert info.language_probability > 0.7
|
||||
segments = []
|
||||
for segment in result:
|
||||
segments.append(
|
||||
{"start": segment.start, "end": segment.end, "text": segment.text}
|
||||
)
|
||||
# number of near 30 sec segments
|
||||
assert len(segments) == 8
|
||||
|
||||
result, info = batched_model.transcribe(
|
||||
physcisworks_path,
|
||||
batch_size=16,
|
||||
without_timestamps=False,
|
||||
word_timestamps=True,
|
||||
)
|
||||
segments = []
|
||||
for segment in result:
|
||||
assert segment.words is not None
|
||||
segments.append(
|
||||
{"start": segment.start, "end": segment.end, "text": segment.text}
|
||||
)
|
||||
assert len(segments) > 8
|
||||
|
||||
|
||||
def test_prefix_with_timestamps(jfk_path):
|
||||
@@ -145,13 +101,6 @@ def test_stereo_diarization(data_dir):
|
||||
assert transcription == "The horizon seems extremely distant."
|
||||
|
||||
|
||||
def test_multisegment_lang_id(physcisworks_path):
|
||||
model = WhisperModel("tiny")
|
||||
language_info = model.detect_language_multi_segment(physcisworks_path)
|
||||
assert language_info["language_code"] == "en"
|
||||
assert language_info["language_confidence"] > 0.8
|
||||
|
||||
|
||||
def test_suppressed_tokens_minus_1():
|
||||
model = WhisperModel("tiny.en")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user