diff --git a/README.md b/README.md index 02a2be6..a7c6ece 100644 --- a/README.md +++ b/README.md @@ -64,8 +64,6 @@ GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be inst ## Usage -### Library - ```python from faster_whisper import WhisperModel @@ -94,7 +92,7 @@ segments, _ = model.transcribe("audio.mp3") segments = list(segments) # The transcription will actually run here. ``` -#### Word-level timestamps +### Word-level timestamps ```python segments, _ = model.transcribe("audio.mp3", word_timestamps=True) @@ -104,7 +102,7 @@ for segment in segments: print("[%.2fs -> %.2fs] %s" % (word.start, word.end, word.word)) ``` -#### VAD filter +### VAD filter The library integrates the [Silero VAD](https://github.com/snakers4/silero-vad) model to filter out parts of the audio without speech: @@ -118,13 +116,26 @@ The default behavior is conservative and only removes silence longer than 2 seco segments, _ = model.transcribe("audio.mp3", vad_filter=True, vad_parameters=dict(min_silence_duration_ms=500)) ``` -#### Going further +### Logging + +The library logging level can be configured like this: + +```python +import logging + +logging.basicConfig() +logging.getLogger("faster_whisper").setLevel(logging.DEBUG) +``` + +### Going further See more model and transcription options in the [`WhisperModel`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation. -### CLI +## Community integrations -You can use [jordimas/whisper-ctranslate2](https://github.com/jordimas/whisper-ctranslate2) to access `faster-whisper` through a CLI interface similar to what is offered by Whisper. +Here is a non exhaustive list of open-source projects using *faster-whisper*. Feel free to add your project to the list! + +* [whisper-ctranslate2](https://github.com/jordimas/whisper-ctranslate2) is a command line client based on `faster-whisper` and compatible with the original client from openai/whisper. ## Model conversion