Merge branch 'master' into prompt

This commit is contained in:
2023-06-24 18:03:05 +08:00
12 changed files with 266 additions and 95 deletions

31
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,31 @@
# Contributing to faster-whisper
Contributions are welcome! Here are some pointers to help you install the library for development and validate your changes before submitting a pull request.
## Install the library for development
We recommend installing the module in editable mode with the `dev` extra requirements:
```bash
git clone https://github.com/guillaumekln/faster-whisper.git
cd faster-whisper/
pip install -e .[dev]
```
## Validate the changes before creating a pull request
1. Make sure the existing tests are still passing (and consider adding new tests as well!):
```bash
pytest tests/
```
2. Reformat and validate the code with the following tools:
```bash
black .
isort .
flake8 .
```
These steps are also run automatically in the CI when you open the pull request.

View File

@@ -1 +1,3 @@
include faster_whisper/assets/silero_vad.onnx
include requirements.txt
include requirements.conversion.txt

View File

@@ -52,10 +52,6 @@ pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/
# Install a specific commit:
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
# Install for development:
git clone https://github.com/guillaumekln/faster-whisper.git
pip install -e faster-whisper/
```
### GPU support
@@ -64,8 +60,6 @@ GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be inst
## Usage
### Library
```python
from faster_whisper import WhisperModel
@@ -94,7 +88,7 @@ segments, _ = model.transcribe("audio.mp3")
segments = list(segments) # The transcription will actually run here.
```
#### Word-level timestamps
### Word-level timestamps
```python
segments, _ = model.transcribe("audio.mp3", word_timestamps=True)
@@ -104,7 +98,7 @@ for segment in segments:
print("[%.2fs -> %.2fs] %s" % (word.start, word.end, word.word))
```
#### VAD filter
### VAD filter
The library integrates the [Silero VAD](https://github.com/snakers4/silero-vad) model to filter out parts of the audio without speech:
@@ -112,19 +106,40 @@ The library integrates the [Silero VAD](https://github.com/snakers4/silero-vad)
segments, _ = model.transcribe("audio.mp3", vad_filter=True)
```
The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the function [`get_speech_timestamps`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:
The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the [source code](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:
```python
segments, _ = model.transcribe("audio.mp3", vad_filter=True, vad_parameters=dict(min_silence_duration_ms=500))
segments, _ = model.transcribe(
"audio.mp3",
vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=500),
)
```
#### Going further
### Logging
The library logging level can be configured like this:
```python
import logging
logging.basicConfig()
logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
```
### Going further
See more model and transcription options in the [`WhisperModel`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.
### CLI
## Community integrations
You can use [jordimas/whisper-ctranslate2](https://github.com/jordimas/whisper-ctranslate2) to access `faster-whisper` through a CLI interface similar to what is offered by Whisper.
Here is a non exhaustive list of open-source projects using faster-whisper. Feel free to add your project to the list!
* [whisper-ctranslate2](https://github.com/Softcatala/whisper-ctranslate2) is a command line client based on faster-whisper and compatible with the original client from openai/whisper.
* [whisper-diarize](https://github.com/MahmoudAshraf97/whisper-diarization) is a speaker diarization tool that is based on faster-whisper and NVIDIA NeMo.
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) contains the portable ready to run binaries of faster-whisper for Windows.
* [asr-sd-pipeline](https://github.com/hedrergudene/asr-sd-pipeline) provides a scalable, modular, end to end multi-speaker speech to text solution implemented using AzureML pipelines.
* [Open-Lyrics](https://github.com/zh-plus/Open-Lyrics) is a Python library that transcribes voice files using faster-whisper, and translates/polishes the resulting text into `.lrc` files in the desired language using OpenAI-GPT.
## Model conversion

View File

@@ -1,10 +1,12 @@
from faster_whisper.audio import decode_audio
from faster_whisper.transcribe import WhisperModel
from faster_whisper.utils import download_model, format_timestamp
from faster_whisper.version import __version__
__all__ = [
"decode_audio",
"WhisperModel",
"download_model",
"format_timestamp",
"__version__",
]

View File

@@ -15,6 +15,7 @@ from faster_whisper.tokenizer import Tokenizer
from faster_whisper.utils import download_model, format_timestamp, get_logger
from faster_whisper.vad import (
SpeechTimestampsMap,
VadOptions,
collect_chunks,
get_speech_timestamps,
)
@@ -28,18 +29,17 @@ class Word(NamedTuple):
class Segment(NamedTuple):
id: int
seek: int
start: float
end: float
text: str
words: Optional[List[Word]]
avg_log_prob: float
tokens: List[int]
temperature: float
avg_logprob: float
compression_ratio: float
no_speech_prob: float
class AudioInfo(NamedTuple):
language: str
language_probability: float
duration: float
words: Optional[List[Word]]
class TranscriptionOptions(NamedTuple):
@@ -52,7 +52,7 @@ class TranscriptionOptions(NamedTuple):
compression_ratio_threshold: Optional[float]
condition_on_previous_text: bool
temperatures: List[float]
initial_prompt: Optional[str]
initial_prompt: Optional[Union[str, Iterable[int]]]
prefix: Optional[str]
suppress_blank: bool
suppress_tokens: Optional[List[int]]
@@ -63,6 +63,15 @@ class TranscriptionOptions(NamedTuple):
append_punctuations: str
class TranscriptionInfo(NamedTuple):
language: str
language_probability: float
duration: float
all_language_probs: Optional[List[Tuple[str, float]]]
transcription_options: TranscriptionOptions
vad_options: VadOptions
class WhisperModel:
def __init__(
self,
@@ -73,6 +82,7 @@ class WhisperModel:
cpu_threads: int = 0,
num_workers: int = 1,
download_root: Optional[str] = None,
local_files_only: bool = False,
):
"""Initializes the Whisper model.
@@ -94,15 +104,21 @@ class WhisperModel:
having multiple workers enables true parallelism when running the model
(concurrent calls to self.model.generate() will run in parallel).
This can improve the global throughput at the cost of increased memory usage.
download_root: Directory where the model should be saved. If not set, the model
is saved in the standard Hugging Face cache directory.
download_root: Directory where the models should be saved. If not set, the models
are saved in the standard Hugging Face cache directory.
local_files_only: If True, avoid downloading the file and return the path to the
local cached file if it exists.
"""
self.logger = get_logger()
if os.path.isdir(model_size_or_path):
model_path = model_size_or_path
else:
model_path = download_model(model_size_or_path, download_root)
model_path = download_model(
model_size_or_path,
local_files_only=local_files_only,
cache_dir=download_root,
)
self.model = ctranslate2.models.Whisper(
model_path,
@@ -154,7 +170,7 @@ class WhisperModel:
log_prob_threshold: Optional[float] = -1.0,
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = True,
initial_prompt: Optional[str] = None,
initial_prompt: Optional[Union[str, Iterable[int]]] = None,
prefix: Optional[str] = None,
suppress_blank: bool = True,
suppress_tokens: Optional[List[int]] = [-1],
@@ -164,8 +180,8 @@ class WhisperModel:
prepend_punctuations: str = "\"'“¿([{-",
append_punctuations: str = "\"'.。,!?::”)]}、",
vad_filter: bool = False,
vad_parameters: Optional[dict] = None,
) -> Tuple[Iterable[Segment], AudioInfo]:
vad_parameters: Optional[Union[dict, VadOptions]] = None,
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
"""Transcribes an input file.
Arguments:
@@ -192,7 +208,8 @@ class WhisperModel:
as a prompt for the next window; disabling may make the text inconsistent across
windows, but the model becomes less prone to getting stuck in a failure loop,
such as repetition looping or timestamps going out of sync.
initial_prompt: Optional text to provide as a prompt for the first window.
initial_prompt: Optional text string or iterable of token ids to provide as a
prompt for the first window.
prefix: Optional text to provide as a prefix for the first window.
suppress_blank: Suppress blank outputs at the beginning of the sampling.
suppress_tokens: List of token IDs to suppress. -1 will suppress a default set
@@ -208,14 +225,14 @@ class WhisperModel:
vad_filter: Enable the voice activity detection (VAD) to filter out parts of the audio
without speech. This step is using the Silero VAD model
https://github.com/snakers4/silero-vad.
vad_parameters: Dictionary of Silero VAD parameters (see available parameters and
default values in the function `get_speech_timestamps`).
vad_parameters: Dictionary of Silero VAD parameters or VadOptions class (see available
parameters and default values in the class `VadOptions`).
Returns:
A tuple with:
- a generator over transcribed segments
- an instance of AudioInfo
- an instance of TranscriptionInfo
"""
sampling_rate = self.feature_extractor.sampling_rate
@@ -229,8 +246,11 @@ class WhisperModel:
)
if vad_filter:
vad_parameters = {} if vad_parameters is None else vad_parameters
speech_chunks = get_speech_timestamps(audio, **vad_parameters)
if vad_parameters is None:
vad_parameters = VadOptions()
elif isinstance(vad_parameters, dict):
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
self.logger.info(
@@ -257,6 +277,7 @@ class WhisperModel:
features = self.feature_extractor(audio)
encoder_output = None
all_language_probs = None
if language is None:
if not self.model.is_multilingual:
@@ -265,9 +286,13 @@ class WhisperModel:
else:
segment = features[:, : self.feature_extractor.nb_max_frames]
encoder_output = self.encode(segment)
results = self.model.detect_language(encoder_output)
language_token, language_probability = results[0][0]
language = language_token[2:-2]
# results is a list of tuple[str, float] with language names and
# probabilities.
results = self.model.detect_language(encoder_output)[0]
# Parse language names to strip out markers
all_language_probs = [(token[2:-2], prob) for (token, prob) in results]
# Get top language token and probability
language, language_probability = all_language_probs[0]
self.logger.info(
"Detected language '%s' with probability %.2f",
@@ -312,13 +337,16 @@ class WhisperModel:
if speech_chunks:
segments = restore_speech_timestamps(segments, speech_chunks, sampling_rate)
audio_info = AudioInfo(
info = TranscriptionInfo(
language=language,
language_probability=language_probability,
duration=duration,
transcription_options=options,
vad_options=vad_parameters,
all_language_probs=all_language_probs,
)
return segments, audio_info
return segments, info
def generate_segments(
self,
@@ -328,15 +356,19 @@ class WhisperModel:
encoder_output: Optional[ctranslate2.StorageView] = None,
) -> Iterable[Segment]:
content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
idx = 0
seek = 0
all_tokens = []
all_prompt_text = []
prompt_reset_since = 0
if options.initial_prompt is not None:
initial_prompt = " " + options.initial_prompt.strip()
initial_prompt_tokens = tokenizer.encode(initial_prompt)
all_tokens.extend(initial_prompt_tokens)
if isinstance(options.initial_prompt, str):
initial_prompt = " " + options.initial_prompt.strip()
initial_prompt_tokens = tokenizer.encode(initial_prompt)
all_tokens.extend(initial_prompt_tokens)
else:
all_tokens.extend(options.initial_prompt)
while seek < content_frames:
time_offset = seek * self.feature_extractor.time_per_frame
@@ -362,9 +394,12 @@ class WhisperModel:
if encoder_output is None:
encoder_output = self.encode(segment)
result, avg_log_prob, temperature = self.generate_with_fallback(
encoder_output, prompt, tokenizer, options
)
(
result,
avg_logprob,
temperature,
compression_ratio,
) = self.generate_with_fallback(encoder_output, prompt, tokenizer, options)
if options.no_speech_threshold is not None:
# no voice activity check
@@ -372,7 +407,7 @@ class WhisperModel:
if (
options.log_prob_threshold is not None
and avg_log_prob > options.log_prob_threshold
and avg_logprob > options.log_prob_threshold
):
# don't skip if the logprob is high enough, despite the no_speech_prob
should_skip = False
@@ -468,9 +503,6 @@ class WhisperModel:
seek += segment_size
if not options.condition_on_previous_text or temperature > 0.5:
prompt_reset_since = len(all_tokens)
if options.word_timestamps:
self.add_word_timestamps(
current_segments,
@@ -511,20 +543,29 @@ class WhisperModel:
):
all_tokens.extend(tokens)
all_prompt_text.append(text)
idx += 1
yield Segment(
id=idx,
seek=seek,
start=segment["start"],
end=segment["end"],
text=text,
tokens=tokens,
temperature=temperature,
avg_logprob=avg_logprob,
compression_ratio=compression_ratio,
no_speech_prob=result.no_speech_prob,
words=(
[Word(**word) for word in segment["words"]]
if options.word_timestamps
else None
),
avg_log_prob=avg_log_prob,
no_speech_prob=result.no_speech_prob,
)
if not options.condition_on_previous_text or temperature > 0.5:
prompt_reset_since = len(all_tokens)
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
# When the model is running on multiple GPUs, the encoder output should be moved
# to the CPU since we don't know which GPU will handle the next job.
@@ -541,10 +582,11 @@ class WhisperModel:
prompt: List[int],
tokenizer: Tokenizer,
options: TranscriptionOptions,
) -> Tuple[ctranslate2.models.WhisperGenerationResult, float, float]:
) -> Tuple[ctranslate2.models.WhisperGenerationResult, float, float, float]:
result = None
avg_log_prob = None
avg_logprob = None
final_temperature = None
compression_ratio = None
max_initial_timestamp_index = int(
round(options.max_initial_timestamp / self.time_precision)
@@ -582,8 +624,8 @@ class WhisperModel:
# Recover the average log prob from the returned score.
seq_len = len(tokens)
cum_log_prob = result.scores[0] * (seq_len**options.length_penalty)
avg_log_prob = cum_log_prob / (seq_len + 1)
cum_logprob = result.scores[0] * (seq_len**options.length_penalty)
avg_logprob = cum_logprob / (seq_len + 1)
text = tokenizer.decode(tokens).strip()
compression_ratio = get_compression_ratio(text)
@@ -605,21 +647,21 @@ class WhisperModel:
if (
options.log_prob_threshold is not None
and avg_log_prob < options.log_prob_threshold
and avg_logprob < options.log_prob_threshold
):
needs_fallback = True # average log probability is too low
self.logger.debug(
"Log probability threshold is not met with temperature %.1f (%f < %f)",
temperature,
avg_log_prob,
avg_logprob,
options.log_prob_threshold,
)
if not needs_fallback:
break
return result, avg_log_prob, final_temperature
return result, avg_logprob, final_temperature, compression_ratio
def get_prompt(
self,
@@ -734,6 +776,8 @@ class WhisperModel:
text_tokens + [tokenizer.eot]
)
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
if len(word_boundaries) <= 1:
return []
jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)
jump_times = time_indices[jumps] / self.tokens_per_second
@@ -782,7 +826,8 @@ def restore_speech_timestamps(
words = []
for word in segment.words:
# Ensure the word start and end times are resolved to the same chunk.
chunk_index = ts_map.get_chunk_index(word.start)
middle = (word.start + word.end) / 2
chunk_index = ts_map.get_chunk_index(middle)
word = word._replace(
start=ts_map.get_original_time(word.start, chunk_index),
end=ts_map.get_original_time(word.end, chunk_index),

View File

@@ -4,6 +4,7 @@ import os
from typing import Optional
import huggingface_hub
import requests
from tqdm.auto import tqdm
@@ -31,7 +32,12 @@ def get_logger():
return logging.getLogger("faster_whisper")
def download_model(size: str, output_dir: Optional[str] = None):
def download_model(
size: str,
output_dir: Optional[str] = None,
local_files_only: bool = False,
cache_dir: Optional[str] = None,
):
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
The model is downloaded from https://huggingface.co/guillaumekln.
@@ -40,7 +46,10 @@ def download_model(size: str, output_dir: Optional[str] = None):
size: Size of the model to download (tiny, tiny.en, base, base.en, small, small.en,
medium, medium.en, large-v1, or large-v2).
output_dir: Directory where the model should be saved. If not set, the model is saved in
the standard Hugging Face cache directory.
the cache directory.
local_files_only: If True, avoid downloading the file and return the path to the local
cached file if it exists.
cache_dir: Path to the folder where cached files are stored.
Returns:
The path to the downloaded model.
@@ -54,25 +63,45 @@ def download_model(size: str, output_dir: Optional[str] = None):
)
repo_id = "guillaumekln/faster-whisper-%s" % size
kwargs = {}
if output_dir is not None:
kwargs["local_dir"] = output_dir
kwargs["local_dir_use_symlinks"] = False
allow_patterns = [
"config.json",
"model.bin",
"tokenizer.json",
"vocabulary.txt",
"vocabulary.*",
]
return huggingface_hub.snapshot_download(
repo_id,
allow_patterns=allow_patterns,
tqdm_class=disabled_tqdm,
**kwargs,
)
kwargs = {
"local_files_only": local_files_only,
"allow_patterns": allow_patterns,
"tqdm_class": disabled_tqdm,
}
if output_dir is not None:
kwargs["local_dir"] = output_dir
kwargs["local_dir_use_symlinks"] = False
if cache_dir is not None:
kwargs["cache_dir"] = cache_dir
try:
return huggingface_hub.snapshot_download(repo_id, **kwargs)
except (
huggingface_hub.utils.HfHubHTTPError,
requests.exceptions.ConnectionError,
) as exception:
logger = get_logger()
logger.warning(
"An error occured while synchronizing the model %s from the Hugging Face Hub:\n%s",
repo_id,
exception,
)
logger.warning(
"Trying to load the model directly from the local cache, if it exists."
)
kwargs["local_files_only"] = True
return huggingface_hub.snapshot_download(repo_id, **kwargs)
def format_timestamp(

View File

@@ -3,47 +3,67 @@ import functools
import os
import warnings
from typing import List, Optional
from typing import List, NamedTuple, Optional
import numpy as np
from faster_whisper.utils import get_assets_path
# The code below is adapted from https://github.com/snakers4/silero-vad.
class VadOptions(NamedTuple):
"""VAD options.
def get_speech_timestamps(
audio: np.ndarray,
*,
threshold: float = 0.5,
min_speech_duration_ms: int = 250,
max_speech_duration_s: float = float("inf"),
min_silence_duration_ms: int = 2000,
window_size_samples: int = 1024,
speech_pad_ms: int = 200,
) -> List[dict]:
"""This method is used for splitting long audios into speech chunks using silero VAD.
Args:
audio: One dimensional float array.
Attributes:
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk,
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out.
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer
than max_speech_duration_s will be split at the timestamp of the last silence that
lasts more than 100s (if any), to prevent agressive cutting. Otherwise, they will be
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be
split aggressively just before max_speech_duration_s.
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
before separating it
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
Values other than these may affect model perfomance!!
Values other than these may affect model performance!!
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
"""
threshold: float = 0.5
min_speech_duration_ms: int = 250
max_speech_duration_s: float = float("inf")
min_silence_duration_ms: int = 2000
window_size_samples: int = 1024
speech_pad_ms: int = 400
def get_speech_timestamps(
audio: np.ndarray,
vad_options: Optional[VadOptions] = None,
**kwargs,
) -> List[dict]:
"""This method is used for splitting long audios into speech chunks using silero VAD.
Args:
audio: One dimensional float array.
vad_options: Options for VAD processing.
kwargs: VAD options passed as keyword arguments for backward compatibility.
Returns:
List of dicts containing begin and end samples of each speech chunk.
"""
if vad_options is None:
vad_options = VadOptions(**kwargs)
threshold = vad_options.threshold
min_speech_duration_ms = vad_options.min_speech_duration_ms
max_speech_duration_s = vad_options.max_speech_duration_s
min_silence_duration_ms = vad_options.min_silence_duration_ms
window_size_samples = vad_options.window_size_samples
speech_pad_ms = vad_options.speech_pad_ms
if window_size_samples not in [512, 1024, 1536]:
warnings.warn(
"Unusual window_size_samples! Supported window_size_samples:\n"

View File

@@ -0,0 +1,3 @@
"""Version information."""
__version__ = "0.6.0"

View File

@@ -2,4 +2,4 @@ av==10.*
ctranslate2>=3.10,<4
huggingface_hub>=0.13
tokenizers==0.13.*
onnxruntime==1.14.* ; python_version < "3.11"
onnxruntime>=1.14,<2

View File

@@ -11,6 +11,14 @@ def get_long_description():
return readme_file.read()
def get_project_version():
version_path = os.path.join(base_dir, "faster_whisper", "version.py")
version = {}
with open(version_path, encoding="utf-8") as fp:
exec(fp.read(), version)
return version["__version__"]
def get_requirements(path):
with open(path, encoding="utf-8") as requirements:
return [requirement.strip() for requirement in requirements]
@@ -23,7 +31,7 @@ conversion_requires = get_requirements(
setup(
name="faster-whisper",
version="0.4.1",
version=get_project_version(),
license="MIT",
description="Faster Whisper transcription with CTranslate2",
long_description=get_long_description(),

View File

@@ -6,11 +6,18 @@ from faster_whisper import WhisperModel, decode_audio
def test_transcribe(jfk_path):
model = WhisperModel("tiny")
segments, info = model.transcribe(jfk_path, word_timestamps=True)
assert info.all_language_probs is not None
assert info.language == "en"
assert info.language_probability > 0.9
assert info.duration == 11
# Get top language info from all results, which should match the
# already existing metadata
top_lang, top_lang_score = info.all_language_probs[0]
assert info.language == top_lang
assert abs(info.language_probability - top_lang_score) < 1e-16
segments = list(segments)
assert len(segments) == 1
@@ -29,10 +36,10 @@ def test_transcribe(jfk_path):
def test_vad(jfk_path):
model = WhisperModel("tiny")
segments, _ = model.transcribe(
segments, info = model.transcribe(
jfk_path,
vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=500),
vad_parameters=dict(min_silence_duration_ms=500, speech_pad_ms=200),
)
segments = list(segments)
@@ -47,6 +54,9 @@ def test_vad(jfk_path):
assert 0 < segment.start < 1
assert 10 < segment.end < 11
assert info.vad_options.min_silence_duration_ms == 500
assert info.vad_options.speech_pad_ms == 200
def test_stereo_diarization(data_dir):
model = WhisperModel("tiny")

View File

@@ -15,3 +15,9 @@ def test_download_model(tmpdir):
for filename in os.listdir(model_dir):
path = os.path.join(model_dir, filename)
assert not os.path.islink(path)
def test_download_model_in_cache(tmpdir):
cache_dir = str(tmpdir.join("model"))
download_model("tiny", cache_dir=cache_dir)
assert os.path.isdir(cache_dir)