Automatically download converted models from the Hugging Face Hub (#70)
* Automatically download converted models from the Hugging Face Hub * Remove unused import * Remove non needed requirements in dev mode * Remove extra index URL when pip install in CI * Allow downloading to a specific directory * Update docstring * Add argument to disable the progess bars * Fix typo in docstring
This commit is contained in:
6
.github/workflows/ci.yml
vendored
6
.github/workflows/ci.yml
vendored
@@ -25,7 +25,7 @@ jobs:
|
||||
- name: Install module
|
||||
run: |
|
||||
pip install wheel
|
||||
pip install .[dev] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -e .[dev]
|
||||
|
||||
- name: Check code format with Black
|
||||
run: |
|
||||
@@ -55,11 +55,11 @@ jobs:
|
||||
- name: Install module
|
||||
run: |
|
||||
pip install wheel
|
||||
pip install .[dev] --extra-index-url https://download.pytorch.org/whl/cpu
|
||||
pip install -e .[dev]
|
||||
|
||||
- name: Run pytest
|
||||
run: |
|
||||
pytest -v tests/test.py
|
||||
pytest -v tests/
|
||||
|
||||
|
||||
build-and-push-package:
|
||||
|
||||
49
README.md
49
README.md
@@ -44,12 +44,6 @@ The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/
|
||||
pip install faster-whisper
|
||||
```
|
||||
|
||||
The model conversion script requires the modules `transformers` and `torch` which can be installed with the `[conversion]` extra requirement:
|
||||
|
||||
```bash
|
||||
pip install faster-whisper[conversion]
|
||||
```
|
||||
|
||||
**Other installation methods:**
|
||||
|
||||
```bash
|
||||
@@ -70,35 +64,20 @@ GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be inst
|
||||
|
||||
## Usage
|
||||
|
||||
### Model conversion
|
||||
|
||||
A Whisper model should be first converted into the CTranslate2 format. We provide a script to download and convert models from the [Hugging Face model repository](https://huggingface.co/models?sort=downloads&search=whisper).
|
||||
|
||||
For example the command below converts the "large-v2" Whisper model and saves the weights in FP16:
|
||||
|
||||
```bash
|
||||
ct2-transformers-converter --model openai/whisper-large-v2 --output_dir whisper-large-v2-ct2 \
|
||||
--copy_files tokenizer.json --quantization float16
|
||||
```
|
||||
|
||||
If the option `--copy_files tokenizer.json` is not used, the tokenizer configuration is automatically downloaded when the model is loaded later.
|
||||
|
||||
Models can also be converted from the code. See the [conversion API](https://opennmt.net/CTranslate2/python/ctranslate2.converters.TransformersConverter.html).
|
||||
|
||||
### Transcription
|
||||
|
||||
```python
|
||||
from faster_whisper import WhisperModel
|
||||
|
||||
model_path = "whisper-large-v2-ct2/"
|
||||
model_size = "large-v2"
|
||||
|
||||
# Run on GPU with FP16
|
||||
model = WhisperModel(model_path, device="cuda", compute_type="float16")
|
||||
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
||||
|
||||
# or run on GPU with INT8
|
||||
# model = WhisperModel(model_path, device="cuda", compute_type="int8_float16")
|
||||
# model = WhisperModel(model_size, device="cuda", compute_type="int8_float16")
|
||||
# or run on CPU with INT8
|
||||
# model = WhisperModel(model_path, device="cpu", compute_type="int8")
|
||||
# model = WhisperModel(model_size, device="cpu", compute_type="int8")
|
||||
|
||||
segments, info = model.transcribe("audio.mp3", beam_size=5)
|
||||
|
||||
@@ -120,6 +99,26 @@ for segment in segments:
|
||||
|
||||
See more model and transcription options in the [`WhisperModel`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.
|
||||
|
||||
## Model conversion
|
||||
|
||||
When loading a model from its size such as `WhisperModel("large-v2")`, the correspondig CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/guillaumekln).
|
||||
|
||||
We also provide a script to convert any Whisper models compatible with the Transformers library. They could be the original OpenAI models or user fine-tuned models.
|
||||
|
||||
For example the command below converts the [original "large-v2" Whisper model](https://huggingface.co/openai/whisper-large-v2) and saves the weights in FP16:
|
||||
|
||||
```bash
|
||||
pip install transformers[torch]>=4.23
|
||||
|
||||
ct2-transformers-converter --model openai/whisper-large-v2 --output_dir whisper-large-v2-ct2 \
|
||||
--copy_files tokenizer.json --quantization float16
|
||||
```
|
||||
|
||||
* The option `--model` accepts a model name on the Hub or a path to a model directory.
|
||||
* If the option `--copy_files tokenizer.json` is not used, the tokenizer configuration is automatically downloaded when the model is loaded later.
|
||||
|
||||
Models can also be converted from the code. See the [conversion API](https://opennmt.net/CTranslate2/python/ctranslate2.converters.TransformersConverter.html).
|
||||
|
||||
## Comparing performance against other implementations
|
||||
|
||||
If you are comparing the performance against other Whisper implementations, you should make sure to run the comparison with similar settings. In particular:
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
from faster_whisper.audio import decode_audio
|
||||
from faster_whisper.transcribe import WhisperModel
|
||||
from faster_whisper.utils import format_timestamp
|
||||
from faster_whisper.utils import download_model, format_timestamp
|
||||
|
||||
__all__ = [
|
||||
"decode_audio",
|
||||
"WhisperModel",
|
||||
"download_model",
|
||||
"format_timestamp",
|
||||
]
|
||||
|
||||
@@ -11,6 +11,7 @@ import tokenizers
|
||||
from faster_whisper.audio import decode_audio
|
||||
from faster_whisper.feature_extractor import FeatureExtractor
|
||||
from faster_whisper.tokenizer import Tokenizer
|
||||
from faster_whisper.utils import download_model
|
||||
|
||||
|
||||
class Word(NamedTuple):
|
||||
@@ -57,7 +58,7 @@ class TranscriptionOptions(NamedTuple):
|
||||
class WhisperModel:
|
||||
def __init__(
|
||||
self,
|
||||
model_path: str,
|
||||
model_size_or_path: str,
|
||||
device: str = "auto",
|
||||
device_index: Union[int, List[int]] = 0,
|
||||
compute_type: str = "default",
|
||||
@@ -67,7 +68,9 @@ class WhisperModel:
|
||||
"""Initializes the Whisper model.
|
||||
|
||||
Args:
|
||||
model_path: Path to the converted model.
|
||||
model_size_or_path: Size of the model to use (e.g. "large-v2", "small", "tiny.en", etc.)
|
||||
or a path to a converted model directory. When a size is configured, the converted
|
||||
model is downloaded from the Hugging Face Hub.
|
||||
device: Device to use for computation ("cpu", "cuda", "auto").
|
||||
device_index: Device ID to use.
|
||||
The model can also be loaded on multiple GPUs by passing a list of IDs
|
||||
@@ -82,6 +85,11 @@ class WhisperModel:
|
||||
(concurrent calls to self.model.generate() will run in parallel).
|
||||
This can improve the global throughput at the cost of increased memory usage.
|
||||
"""
|
||||
if os.path.isdir(model_size_or_path):
|
||||
model_path = model_size_or_path
|
||||
else:
|
||||
model_path = download_model(model_size_or_path)
|
||||
|
||||
self.model = ctranslate2.models.Whisper(
|
||||
model_path,
|
||||
device=device,
|
||||
|
||||
@@ -1,3 +1,42 @@
|
||||
from typing import Optional
|
||||
|
||||
import huggingface_hub
|
||||
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
|
||||
def download_model(
|
||||
size: str,
|
||||
output_dir: Optional[str] = None,
|
||||
show_progress_bars: bool = True,
|
||||
):
|
||||
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
|
||||
|
||||
The model is downloaded from https://huggingface.co/guillaumekln.
|
||||
|
||||
Args:
|
||||
size: Size of the model to download (tiny, tiny.en, base, base.en, small, small.en,
|
||||
medium, medium.en, or large-v2).
|
||||
output_dir: Directory where the model should be saved. If not set, the model is saved in
|
||||
the standard Hugging Face cache directory.
|
||||
show_progress_bars: Show the tqdm progress bars during the download.
|
||||
|
||||
Returns:
|
||||
The path to the downloaded model.
|
||||
"""
|
||||
repo_id = "guillaumekln/faster-whisper-%s" % size
|
||||
kwargs = {}
|
||||
|
||||
if output_dir is not None:
|
||||
kwargs["local_dir"] = output_dir
|
||||
kwargs["local_dir_use_symlinks"] = False
|
||||
|
||||
if not show_progress_bars:
|
||||
kwargs["tqdm_class"] = disabled_tqdm
|
||||
|
||||
return huggingface_hub.snapshot_download(repo_id, **kwargs)
|
||||
|
||||
|
||||
def format_timestamp(
|
||||
seconds: float,
|
||||
always_include_hours: bool = False,
|
||||
@@ -19,3 +58,9 @@ def format_timestamp(
|
||||
return (
|
||||
f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}"
|
||||
)
|
||||
|
||||
|
||||
class disabled_tqdm(tqdm):
|
||||
def __init__(self, *args, **kwargs):
|
||||
kwargs["disable"] = True
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
av==10.*
|
||||
ctranslate2>=3.10,<4
|
||||
huggingface_hub>=0.13
|
||||
tokenizers==0.13.*
|
||||
|
||||
3
setup.py
3
setup.py
@@ -48,8 +48,7 @@ setup(
|
||||
install_requires=install_requires,
|
||||
extras_require={
|
||||
"conversion": conversion_requires,
|
||||
"dev": conversion_requires
|
||||
+ [
|
||||
"dev": [
|
||||
"black==23.*",
|
||||
"flake8==6.*",
|
||||
"isort==5.*",
|
||||
|
||||
@@ -1,6 +1,5 @@
|
||||
import os
|
||||
|
||||
import ctranslate2
|
||||
import pytest
|
||||
|
||||
|
||||
@@ -12,20 +11,3 @@ def data_dir():
|
||||
@pytest.fixture
|
||||
def jfk_path(data_dir):
|
||||
return os.path.join(data_dir, "jfk.flac")
|
||||
|
||||
|
||||
@pytest.fixture(scope="session")
|
||||
def tiny_model_dir(tmp_path_factory):
|
||||
model_path = str(tmp_path_factory.mktemp("data") / "model")
|
||||
convert_model("tiny", model_path)
|
||||
return model_path
|
||||
|
||||
|
||||
def convert_model(size, output_dir):
|
||||
name = "openai/whisper-%s" % size
|
||||
|
||||
ctranslate2.converters.TransformersConverter(
|
||||
name,
|
||||
copy_files=["tokenizer.json"],
|
||||
load_as_float16=True,
|
||||
).convert(output_dir, quantization="float16")
|
||||
|
||||
@@ -1,8 +1,8 @@
|
||||
from faster_whisper import WhisperModel
|
||||
|
||||
|
||||
def test_transcribe(tiny_model_dir, jfk_path):
|
||||
model = WhisperModel(tiny_model_dir)
|
||||
def test_transcribe(jfk_path):
|
||||
model = WhisperModel("tiny")
|
||||
segments, info = model.transcribe(jfk_path, word_timestamps=True)
|
||||
|
||||
assert info.language == "en"
|
||||
17
tests/test_utils.py
Normal file
17
tests/test_utils.py
Normal file
@@ -0,0 +1,17 @@
|
||||
import os
|
||||
|
||||
from faster_whisper import download_model
|
||||
|
||||
|
||||
def test_download_model(tmpdir):
|
||||
output_dir = str(tmpdir.join("model"))
|
||||
|
||||
model_dir = download_model("tiny", output_dir=output_dir)
|
||||
|
||||
assert model_dir == output_dir
|
||||
assert os.path.isdir(model_dir)
|
||||
assert not os.path.islink(model_dir)
|
||||
|
||||
for filename in os.listdir(model_dir):
|
||||
path = os.path.join(model_dir, filename)
|
||||
assert not os.path.islink(path)
|
||||
Reference in New Issue
Block a user