Compare commits
10 Commits
36160c1e7e
...
9a646b69e6
| Author | SHA1 | Date | |
|---|---|---|---|
|
9a646b69e6
|
|||
|
49af9564ab
|
|||
|
|
3adcc12d0f | ||
|
|
2b53dee6b6 | ||
|
|
06d24056e9 | ||
|
|
e9a082dcf2 | ||
|
|
051b3350e5 | ||
|
|
746f2698db | ||
|
|
a5d03e55fa | ||
|
|
9fa1989073 |
14
.gitignore
vendored
14
.gitignore
vendored
@@ -1 +1,15 @@
|
||||
# Byte-compiled / Optimized / DLL Files
|
||||
*.pyc
|
||||
*.pyo
|
||||
*.pyd
|
||||
__pycache__/
|
||||
|
||||
# Distribution / Packaging
|
||||
venv/
|
||||
|
||||
# Unit Test
|
||||
.pytest_cache/
|
||||
|
||||
# Ignore IDE, Editor Files
|
||||
.idea/
|
||||
.vscode/
|
||||
|
||||
@@ -87,6 +87,13 @@ for segment in segments:
|
||||
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
|
||||
```
|
||||
|
||||
**Warning:** `segments` is a *generator* so the transcription only starts when you iterate over it. The transcription can be run to completion by gathering the segments in a list or a `for` loop:
|
||||
|
||||
```python
|
||||
segments, _ = model.transcribe("audio.mp3")
|
||||
segments = list(segments) # The transcription will actually run here.
|
||||
```
|
||||
|
||||
#### Word-level timestamps
|
||||
|
||||
```python
|
||||
|
||||
@@ -125,19 +125,21 @@ class Tokenizer:
|
||||
current_tokens.append(token)
|
||||
decoded = self.decode_with_timestamps(current_tokens)
|
||||
|
||||
if (
|
||||
replacement_char not in decoded
|
||||
or decoded_full[unicode_offset + decoded.index(replacement_char)]
|
||||
== replacement_char
|
||||
try:
|
||||
replacement_char_index = decoded.index(replacement_char)
|
||||
replacement_char_index += unicode_offset
|
||||
except ValueError:
|
||||
replacement_char_index = None
|
||||
|
||||
if replacement_char_index is None or (
|
||||
replacement_char_index < len(decoded_full)
|
||||
and decoded_full[replacement_char_index] == replacement_char
|
||||
):
|
||||
words.append(decoded)
|
||||
word_tokens.append(current_tokens)
|
||||
current_tokens = []
|
||||
unicode_offset += len(decoded)
|
||||
|
||||
if unicode_offset >= len(decoded_full):
|
||||
break
|
||||
|
||||
return words, word_tokens
|
||||
|
||||
def split_tokens_on_spaces(
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import itertools
|
||||
import logging
|
||||
import os
|
||||
import zlib
|
||||
|
||||
@@ -11,7 +12,7 @@ import tokenizers
|
||||
from faster_whisper.audio import decode_audio
|
||||
from faster_whisper.feature_extractor import FeatureExtractor
|
||||
from faster_whisper.tokenizer import Tokenizer
|
||||
from faster_whisper.utils import download_model
|
||||
from faster_whisper.utils import download_model, format_timestamp, get_logger
|
||||
from faster_whisper.vad import (
|
||||
SpeechTimestampsMap,
|
||||
collect_chunks,
|
||||
@@ -71,6 +72,7 @@ class WhisperModel:
|
||||
compute_type: str = "default",
|
||||
cpu_threads: int = 0,
|
||||
num_workers: int = 1,
|
||||
download_root: Optional[str] = None,
|
||||
):
|
||||
"""Initializes the Whisper model.
|
||||
|
||||
@@ -92,11 +94,15 @@ class WhisperModel:
|
||||
having multiple workers enables true parallelism when running the model
|
||||
(concurrent calls to self.model.generate() will run in parallel).
|
||||
This can improve the global throughput at the cost of increased memory usage.
|
||||
download_root: Directory where the model should be saved. If not set, the model
|
||||
is saved in the standard Hugging Face cache directory.
|
||||
"""
|
||||
self.logger = get_logger()
|
||||
|
||||
if os.path.isdir(model_size_or_path):
|
||||
model_path = model_size_or_path
|
||||
else:
|
||||
model_path = download_model(model_size_or_path)
|
||||
model_path = download_model(model_size_or_path, download_root)
|
||||
|
||||
self.model = ctranslate2.models.Whisper(
|
||||
model_path,
|
||||
@@ -211,17 +217,40 @@ class WhisperModel:
|
||||
- a generator over transcribed segments
|
||||
- an instance of AudioInfo
|
||||
"""
|
||||
if not isinstance(audio, np.ndarray):
|
||||
audio = decode_audio(
|
||||
audio, sampling_rate=self.feature_extractor.sampling_rate
|
||||
)
|
||||
sampling_rate = self.feature_extractor.sampling_rate
|
||||
|
||||
duration = audio.shape[0] / self.feature_extractor.sampling_rate
|
||||
if not isinstance(audio, np.ndarray):
|
||||
audio = decode_audio(audio, sampling_rate=sampling_rate)
|
||||
|
||||
duration = audio.shape[0] / sampling_rate
|
||||
|
||||
self.logger.info(
|
||||
"Processing audio with duration %s", format_timestamp(duration)
|
||||
)
|
||||
|
||||
if vad_filter:
|
||||
vad_parameters = {} if vad_parameters is None else vad_parameters
|
||||
speech_chunks = get_speech_timestamps(audio, **vad_parameters)
|
||||
audio = collect_chunks(audio, speech_chunks)
|
||||
|
||||
self.logger.info(
|
||||
"VAD filter removed %s of audio",
|
||||
format_timestamp(duration - (audio.shape[0] / sampling_rate)),
|
||||
)
|
||||
|
||||
if self.logger.isEnabledFor(logging.DEBUG):
|
||||
self.logger.debug(
|
||||
"VAD filter kept the following audio segments: %s",
|
||||
", ".join(
|
||||
"[%s -> %s]"
|
||||
% (
|
||||
format_timestamp(chunk["start"] / sampling_rate),
|
||||
format_timestamp(chunk["end"] / sampling_rate),
|
||||
)
|
||||
for chunk in speech_chunks
|
||||
),
|
||||
)
|
||||
|
||||
else:
|
||||
speech_chunks = None
|
||||
|
||||
@@ -239,6 +268,12 @@ class WhisperModel:
|
||||
results = self.model.detect_language(encoder_output)
|
||||
language_token, language_probability = results[0][0]
|
||||
language = language_token[2:-2]
|
||||
|
||||
self.logger.info(
|
||||
"Detected language '%s' with probability %.2f",
|
||||
language,
|
||||
language_probability,
|
||||
)
|
||||
else:
|
||||
language_probability = 1
|
||||
|
||||
@@ -275,9 +310,7 @@ class WhisperModel:
|
||||
segments = self.generate_segments(features, tokenizer, options, encoder_output)
|
||||
|
||||
if speech_chunks:
|
||||
segments = restore_speech_timestamps(
|
||||
segments, speech_chunks, self.feature_extractor.sampling_rate
|
||||
)
|
||||
segments = restore_speech_timestamps(segments, speech_chunks, sampling_rate)
|
||||
|
||||
audio_info = AudioInfo(
|
||||
language=language,
|
||||
@@ -297,6 +330,7 @@ class WhisperModel:
|
||||
content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
|
||||
seek = 0
|
||||
all_tokens = []
|
||||
all_prompt_text = []
|
||||
prompt_reset_since = 0
|
||||
|
||||
if options.initial_prompt is not None:
|
||||
@@ -312,6 +346,11 @@ class WhisperModel:
|
||||
)
|
||||
segment_duration = segment_size * self.feature_extractor.time_per_frame
|
||||
|
||||
if self.logger.isEnabledFor(logging.DEBUG):
|
||||
self.logger.debug(
|
||||
"Processing segment at %s", format_timestamp(time_offset)
|
||||
)
|
||||
|
||||
previous_tokens = all_tokens[prompt_reset_since:]
|
||||
prompt = self.get_prompt(
|
||||
tokenizer,
|
||||
@@ -339,6 +378,12 @@ class WhisperModel:
|
||||
should_skip = False
|
||||
|
||||
if should_skip:
|
||||
self.logger.debug(
|
||||
"No speech threshold is met (%f > %f)",
|
||||
result.no_speech_prob,
|
||||
options.no_speech_threshold,
|
||||
)
|
||||
|
||||
# fast-forward to the next segment boundary
|
||||
seek += segment_size
|
||||
continue
|
||||
@@ -457,7 +502,15 @@ class WhisperModel:
|
||||
if segment["start"] == segment["end"] or not text.strip():
|
||||
continue
|
||||
|
||||
all_tokens.extend(tokens)
|
||||
check_prompt_num = 1
|
||||
if all(
|
||||
[
|
||||
text.strip() != i.strip()
|
||||
for i in all_prompt_text[-check_prompt_num:]
|
||||
]
|
||||
):
|
||||
all_tokens.extend(tokens)
|
||||
all_prompt_text.append(text)
|
||||
|
||||
yield Segment(
|
||||
start=segment["start"],
|
||||
@@ -543,12 +596,26 @@ class WhisperModel:
|
||||
):
|
||||
needs_fallback = True # too repetitive
|
||||
|
||||
self.logger.debug(
|
||||
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
|
||||
temperature,
|
||||
compression_ratio,
|
||||
options.compression_ratio_threshold,
|
||||
)
|
||||
|
||||
if (
|
||||
options.log_prob_threshold is not None
|
||||
and avg_log_prob < options.log_prob_threshold
|
||||
):
|
||||
needs_fallback = True # average log probability is too low
|
||||
|
||||
self.logger.debug(
|
||||
"Log probability threshold is not met with temperature %.1f (%f < %f)",
|
||||
temperature,
|
||||
avg_log_prob,
|
||||
options.log_prob_threshold,
|
||||
)
|
||||
|
||||
if not needs_fallback:
|
||||
break
|
||||
|
||||
@@ -721,14 +788,18 @@ def restore_speech_timestamps(
|
||||
end=ts_map.get_original_time(word.end, chunk_index),
|
||||
)
|
||||
words.append(word)
|
||||
else:
|
||||
words = segment.words
|
||||
|
||||
segment = segment._replace(
|
||||
start=ts_map.get_original_time(segment.start),
|
||||
end=ts_map.get_original_time(segment.end),
|
||||
words=words,
|
||||
)
|
||||
segment = segment._replace(
|
||||
start=words[0].start,
|
||||
end=words[-1].end,
|
||||
words=words,
|
||||
)
|
||||
|
||||
else:
|
||||
segment = segment._replace(
|
||||
start=ts_map.get_original_time(segment.start),
|
||||
end=ts_map.get_original_time(segment.end),
|
||||
)
|
||||
|
||||
yield segment
|
||||
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import logging
|
||||
import os
|
||||
|
||||
from typing import Optional
|
||||
@@ -25,6 +26,11 @@ def get_assets_path():
|
||||
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
|
||||
|
||||
|
||||
def get_logger():
|
||||
"""Returns the module logger."""
|
||||
return logging.getLogger("faster_whisper")
|
||||
|
||||
|
||||
def download_model(size: str, output_dir: Optional[str] = None):
|
||||
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user