Compare commits

...

48 Commits

Author SHA1 Message Date
trungkienbkhn
06d32bf0c1 Bump version to 1.0.0 (#696) 2024-02-22 09:49:01 +01:00
Purfview
30d6043e90 Prevent infinite loop for out-of-bound timestamps in clip_timestamps (#697)
Same as https://github.com/openai/whisper/pull/2005
2024-02-22 09:48:35 +01:00
BBC-Esq
22c75d0cc3 Update README.md (#672)
Add Faster-Whisper-Transcriber to community integrations.
2024-02-21 10:18:11 +01:00
trungkienbkhn
092067208b Add clip_timestamps and hallucination_silence_threshold options (#646) 2024-02-20 17:34:54 +01:00
Jordi Mas
6ffcbdfbc2 Fix typos in README.md (#668) 2024-02-20 17:33:17 +01:00
Purfview
52695567c9 Bumps up PyAV version to support Python 3.12.x (#679) 2024-02-20 17:31:07 +01:00
IlianP
c6b28ed3a0 Update README.md (#685)
I'm surprised that WhisperX hasn't made it into this list yet, as it has more stars than faster-whisper itself 🚀
2024-02-20 17:28:00 +01:00
trungkienbkhn
4ab646035f Upgrade ctranslate2 version to support CUDA 12 (#694) 2024-02-20 17:26:55 +01:00
Purfview
f144e4c83d Expands the note for distil-whisper (#659) 2024-01-28 21:48:40 +01:00
Purfview
3aec421849 Add: More clarity of what "max_new_tokens" does (#658)
* Add: More clarity of what "max_new_tokens" does
2024-01-28 21:40:33 +01:00
Dominik Macháček
64b9f244bd Whisper-Streaming mention (#656)
under community integrations
2024-01-25 18:27:27 +01:00
Purfview
00efce1696 Bugfix: Illogical "Avoid computing higher temperatures on no_speech" (#652) 2024-01-24 11:54:43 +01:00
metame
ad3c83045b support distil-whisper (#557) 2024-01-24 10:17:12 +01:00
Jürgen Fleiß
72ff979a2e Add GUI faster-whisper project README.md (#554)
Added aTrain GUI faster-whisper transcription and diarization tool as community project.

Co-authored-by: JuergenFleiss <118339672+Juergen-J-F@users.noreply.github.com>
2024-01-18 13:01:02 +01:00
makaveli
615de0d2d9 add WhisperLive to community integration (#647) 2024-01-18 12:54:14 +01:00
Purfview
44f7e58947 Update whisper-standalone-win description in README.md (#508)
* Update whisper-standalone-win description in README.md
2023-12-14 13:03:46 +01:00
Purfview
ebcfd6b964 Fix broken prompt_reset_on_temperature (#604)
* Fix broken prompt_reset_on_temperature

Fixing: https://github.com/SYSTRAN/faster-whisper/issues/603

Broken because `generate_with_fallback()` doesn't return final temperature.

Regression since PR356 -> https://github.com/SYSTRAN/faster-whisper/pull/356
2023-12-13 13:14:39 +01:00
trungkienbkhn
19329a3611 Word timing tweaks (#616) 2023-12-13 12:38:44 +01:00
Purfview
65094b779e Update info on cuBLAS and cuDNN libs in README.md (#513) 2023-11-27 12:12:47 +01:00
Clayton Yochum
9641d5f56a Force read-mode in av.open (#566)
The `av.open` functions checks input metadata to determine the mode to open with ("r" or "w"). If an input to `decode_audio` is found to be in write-mode, without this change it can't be read. Forcing read mode solves this.
2023-11-27 10:43:35 +01:00
Dang Chuan Nguyen
e1a218fab1 Bump version to 0.10.0 2023-11-24 23:19:47 +01:00
Oscaarjs
3084409633 Add V3 Support (#578)
* Add V3 Support

* update conversion example

---------

Co-authored-by: oscaarjs <oscar.johansson@conversy.se>
2023-11-24 23:16:12 +01:00
Guillaume Klein
5a0541ea7d Bump version to 0.9.0 2023-09-18 16:21:37 +02:00
Guillaume Klein
e94711bb5c Add property WhisperModel.supported_languages (#476)
* Expose function supported_languages

* Make it a method
2023-09-14 17:42:02 +02:00
Guillaume Klein
0048844f54 Expose function available_models (#475)
* Expose function available_models

* Add test case
2023-09-14 17:17:01 +02:00
Guillaume Klein
a49097e655 Add some missing typing annotations in transcribe.py 2023-09-12 15:45:54 +02:00
Guillaume Klein
81086f6d33 Always run the encoder at the beginning of the loop (#468) 2023-09-12 14:44:37 +02:00
Guillaume Klein
f697945691 Update tokenizers requirement to include version 0.14 (#469) 2023-09-12 14:44:22 +02:00
Guillaume Klein
727ab81f31 Improve error message for invalid task and language parameters (#466) 2023-09-12 10:02:23 +02:00
Guillaume Klein
0285d46f6f Add more details about the requirements in the README (#463) 2023-09-08 14:35:17 +02:00
Guillaume Klein
ad388cd394 Bump version to 0.8.0 2023-09-04 11:56:48 +02:00
Guillaume Klein
4a41746e55 Log a warning when the model is English-only but the language is set to something else (#454) 2023-09-04 11:55:40 +02:00
Guillaume Klein
1e6eb967c9 Add "large" alias for "large-v2" model (#453) 2023-09-04 11:54:42 +02:00
Guillaume Klein
f0ff12965a Expose generation parameter no_repeat_ngram_size (#449) 2023-09-01 17:31:30 +02:00
Guillaume Klein
5871858a5f Force the garbage collector to run after decoding the audio with PyAV (#448) 2023-09-01 15:25:13 +02:00
MinorJinx
e87fbf8a49 Added audio duration after VAD to TranscriptionInfo object (#445)
* Added VAD removed audio duration to TranscriptionInfo object

Along with the duration of the original audio, this commit  adds the seconds of audio removed by the VAD to the returned info obj

* Chaning naming for duration_after_vad

Instead of the property returning the audio duration removed, it now returns the final duration after the vad.
If vad_filter is False or if it doesn't remove any audio, the original duration is returned.
2023-08-31 17:19:48 +02:00
Hrishikesh Barman
7b271da035 docs: add wscribe to community integrations (#427)
wscribe is a utility to generate transcript specifically to make it easy
for further manual edits accompanied by the wscribe-editor
2023-08-17 08:50:24 +02:00
Aisu Wata
1562b02345 added repetition_penalty to TranscriptionOptions (#403)
Co-authored-by: Aisu Wata <aisu.wata0@gmail.com>
2023-08-06 10:08:24 +02:00
Purfview
1ce16652ee Adds DEBUG log message for prompt_reset_on_temperature (#399)
Produce DEBUG log message if prompt_reset_on_temperature threshold is met.
2023-08-04 09:06:17 +02:00
Purfview
857be6f621 Rename clear_previous_text_on_temperature argument (#398)
`prompt_reset_on_temperature` is more clear what it does.
2023-08-03 18:44:37 +02:00
KH
1a1eb1a027 Add clear_previous_text_on_temperature parameter (#397)
* Add clear_previous_text_on_temperature parameter

* Add a description
2023-08-03 15:40:58 +02:00
Guillaume Klein
5c17de1771 Bump version to 0.7.1 2023-07-24 11:10:12 +02:00
Guillaume Klein
0f55c436fe Invalidate the cached encoder output when no_speech threshold is met (#376) 2023-07-24 10:57:15 +02:00
KH
e786e26f75 Return result with best log prob when all temperature fallbacks failed (#356)
* Resolve Inference Selection Bug

* Refactor for better readability

* Filter out results with compression_ratio

* Refactor to avoid variable repetition

* Fix incorrect index and perform minor refactoring

* Remove final_temperature variable
2023-07-20 16:13:11 +02:00
KH
687db319e0 Remove duplicate code (#359) 2023-07-18 16:03:01 +02:00
Guillaume Klein
171d90dd1f Bump version to 0.7.0 2023-07-18 15:23:47 +02:00
Guillaume Klein
0e051a5b77 Prepend prefix tokens with the initial timestamp token (#358) 2023-07-18 15:22:39 +02:00
Guillaume Klein
2a37390fed Minor reformatting in code snippet 2023-07-18 15:08:53 +02:00
11 changed files with 610 additions and 103 deletions

119
README.md
View File

@@ -8,6 +8,8 @@ This implementation is up to 4 times faster than [openai/whisper](https://github
## Benchmark
### Whisper
For reference, here's the time and memory usage that are required to transcribe [**13 minutes**](https://www.youtube.com/watch?v=0u7tTptBo9I) of audio using different implementations:
* [openai/whisper](https://github.com/openai/whisper)@[6dea21fd](https://github.com/openai/whisper/commit/6dea21fd7f7253bfe450f1e2512a0fe47ee2d258)
@@ -36,6 +38,71 @@ For reference, here's the time and memory usage that are required to transcribe
*Executed with 8 threads on a Intel(R) Xeon(R) Gold 6226R.*
### Distil-whisper
| Implementation | Precision | Beam size | Time | Gigaspeech WER |
| --- | --- | --- | --- | --- |
| distil-whisper/distil-large-v2 | fp16 | 4 |- | 10.36 |
| [faster-distil-large-v2](https://huggingface.co/Systran/faster-distil-whisper-large-v2) | fp16 | 5 | - | 10.28 |
| distil-whisper/distil-medium.en | fp16 | 4 | - | 11.21 |
| [faster-distil-medium.en](https://huggingface.co/Systran/faster-distil-whisper-medium.en) | fp16 | 5 | - | 11.21 |
*Executed with CUDA 11.4 on a NVIDIA 3090.*
<details>
<summary>testing details (click to expand)</summary>
For `distil-whisper/distil-large-v2`, the WER is tested with code sample from [link](https://huggingface.co/distil-whisper/distil-large-v2#evaluation). for `faster-distil-whisper`, the WER is tested with setting:
```python
from faster_whisper import WhisperModel
model_size = "distil-large-v2"
# model_size = "distil-medium.en"
# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en")
```
</details>
## Requirements
* Python 3.8 or greater
Unlike openai-whisper, FFmpeg does **not** need to be installed on the system. The audio is decoded with the Python library [PyAV](https://github.com/PyAV-Org/PyAV) which bundles the FFmpeg libraries in its package.
### GPU
GPU execution requires the following NVIDIA libraries to be installed:
* [cuBLAS for CUDA 11](https://developer.nvidia.com/cublas)
* [cuDNN 8 for CUDA 11](https://developer.nvidia.com/cudnn)
There are multiple ways to install these libraries. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.
<details>
<summary>Other installation methods (click to expand)</summary>
#### Use Docker
The libraries are installed in this official NVIDIA Docker image: `nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04`.
#### Install with `pip` (Linux only)
On Linux these libraries can be installed with `pip`. Note that `LD_LIBRARY_PATH` must be set before launching Python.
```bash
pip install nvidia-cublas-cu11 nvidia-cudnn-cu11
export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
```
#### Download the libraries from Purfview's repository (Windows & Linux)
Purfview's [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) provides the required NVIDIA libraries for Windows & Linux in a [single archive](https://github.com/Purfview/whisper-standalone-win/releases/tag/libs). Decompress the archive and place the libraries in a directory included in the `PATH`.
</details>
## Installation
The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/):
@@ -44,26 +111,31 @@ The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/
pip install faster-whisper
```
**Other installation methods:**
<details>
<summary>Other installation methods (click to expand)</summary>
### Install the master branch
```bash
# Install the master branch:
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/refs/heads/master.tar.gz"
```
# Install a specific commit:
### Install a specific commit
```bash
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
```
### GPU support
GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be installed on the system. Please refer to the [CTranslate2 documentation](https://opennmt.net/CTranslate2/installation.html).
</details>
## Usage
### Faster-whisper
```python
from faster_whisper import WhisperModel
model_size = "large-v2"
model_size = "large-v3"
# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")
@@ -87,6 +159,18 @@ for segment in segments:
segments, _ = model.transcribe("audio.mp3")
segments = list(segments) # The transcription will actually run here.
```
### Faster-distil-whisper
For usage of `faster-ditil-whisper`, please refer to: https://github.com/guillaumekln/faster-whisper/issues/533
```python
model_size = "distil-large-v2"
# model_size = "distil-medium.en"
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5,
language="en", max_new_tokens=128, condition_on_previous_text=False)
```
NOTE: Empirically, `condition_on_previous_text=True` will degrade the performance of `faster-distil-whisper` for long audio. Degradation on the first chunk was observed with `initial_prompt` too.
### Word-level timestamps
@@ -135,25 +219,32 @@ See more model and transcription options in the [`WhisperModel`](https://github.
Here is a non exhaustive list of open-source projects using faster-whisper. Feel free to add your project to the list!
* [WhisperX](https://github.com/m-bain/whisperX) is an award-winning Python library that offers speaker diarization and accurate word-level timestamps using wav2vec2 alignment
* [whisper-ctranslate2](https://github.com/Softcatala/whisper-ctranslate2) is a command line client based on faster-whisper and compatible with the original client from openai/whisper.
* [whisper-diarize](https://github.com/MahmoudAshraf97/whisper-diarization) is a speaker diarization tool that is based on faster-whisper and NVIDIA NeMo.
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) contains the portable ready to run binaries of faster-whisper for Windows.
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) Standalone CLI executables of faster-whisper for Windows, Linux & macOS.
* [asr-sd-pipeline](https://github.com/hedrergudene/asr-sd-pipeline) provides a scalable, modular, end to end multi-speaker speech to text solution implemented using AzureML pipelines.
* [Open-Lyrics](https://github.com/zh-plus/Open-Lyrics) is a Python library that transcribes voice files using faster-whisper, and translates/polishes the resulting text into `.lrc` files in the desired language using OpenAI-GPT.
* [wscribe](https://github.com/geekodour/wscribe) is a flexible transcript generation tool supporting faster-whisper, it can export word level transcript and the exported transcript then can be edited with [wscribe-editor](https://github.com/geekodour/wscribe-editor)
* [aTrain](https://github.com/BANDAS-Center/aTrain) is a graphical user interface implementation of faster-whisper developed at the BANDAS-Center at the University of Graz for transcription and diarization in Windows ([Windows Store App](https://apps.microsoft.com/detail/atrain/9N15Q44SZNS2)) and Linux.
* [Whisper-Streaming](https://github.com/ufal/whisper_streaming) implements real-time mode for offline Whisper-like speech-to-text models with faster-whisper as the most recommended back-end. It implements a streaming policy with self-adaptive latency based on the actual source complexity, and demonstrates the state of the art.
* [WhisperLive](https://github.com/collabora/WhisperLive) is a nearly-live implementation of OpenAI's Whisper which uses faster-whisper as the backend to transcribe audio in real-time.
* [Faster-Whisper-Transcriber](https://github.com/BBC-Esq/ctranslate2-faster-whisper-transcriber) is a simple but reliable voice transcriber that provides a user-friendly interface.
## Model conversion
When loading a model from its size such as `WhisperModel("large-v2")`, the correspondig CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/guillaumekln).
When loading a model from its size such as `WhisperModel("large-v3")`, the corresponding CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/Systran).
We also provide a script to convert any Whisper models compatible with the Transformers library. They could be the original OpenAI models or user fine-tuned models.
For example the command below converts the [original "large-v2" Whisper model](https://huggingface.co/openai/whisper-large-v2) and saves the weights in FP16:
For example the command below converts the [original "large-v3" Whisper model](https://huggingface.co/openai/whisper-large-v3) and saves the weights in FP16:
```bash
pip install transformers[torch]>=4.23
ct2-transformers-converter --model openai/whisper-large-v2 --output_dir whisper-large-v2-ct2 \
--copy_files tokenizer.json --quantization float16
ct2-transformers-converter --model openai/whisper-large-v3 --output_dir whisper-large-v3-ct2
--copy_files tokenizer.json preprocessor_config.json --quantization float16
```
* The option `--model` accepts a model name on the Hub or a path to a model directory.
@@ -165,12 +256,12 @@ Models can also be converted from the code. See the [conversion API](https://ope
1. Directly load the model from a local directory:
```python
model = faster_whisper.WhisperModel('whisper-large-v2-ct2')
model = faster_whisper.WhisperModel("whisper-large-v3-ct2")
```
2. [Upload your model to the Hugging Face Hub](https://huggingface.co/docs/transformers/model_sharing#upload-with-the-web-interface) and load it from its name:
```python
model = faster_whisper.WhisperModel('username/whisper-large-v2-ct2')
model = faster_whisper.WhisperModel("username/whisper-large-v3-ct2")
```
## Comparing performance against other implementations

View File

@@ -1,9 +1,10 @@
from faster_whisper.audio import decode_audio
from faster_whisper.transcribe import WhisperModel
from faster_whisper.utils import download_model, format_timestamp
from faster_whisper.utils import available_models, download_model, format_timestamp
from faster_whisper.version import __version__
__all__ = [
"available_models",
"decode_audio",
"WhisperModel",
"download_model",

View File

@@ -6,6 +6,7 @@ system dependencies. FFmpeg does not need to be installed on the system.
However, the API is quite low-level so we need to manipulate audio frames directly.
"""
import gc
import io
import itertools
@@ -42,7 +43,7 @@ def decode_audio(
raw_buffer = io.BytesIO()
dtype = None
with av.open(input_file, metadata_errors="ignore") as container:
with av.open(input_file, mode="r", metadata_errors="ignore") as container:
frames = container.decode(audio=0)
frames = _ignore_invalid_frames(frames)
frames = _group_frames(frames, 500000)
@@ -53,6 +54,11 @@ def decode_audio(
dtype = array.dtype
raw_buffer.write(array)
# It appears that some objects related to the resampler are not freed
# unless the garbage collector is manually run.
del resampler
gc.collect()
audio = np.frombuffer(raw_buffer.getbuffer(), dtype=dtype)
# Convert s16 back to f32.

View File

@@ -142,11 +142,15 @@ class FeatureExtractor:
data[f] = np.fft.fft(fft_signal, axis=0)[:num_fft_bins]
return data.T
def __call__(self, waveform, padding=True):
def __call__(self, waveform, padding=True, chunk_length=None):
"""
Compute the log-Mel spectrogram of the provided audio, gives similar results
whisper's original torch implementation with 1e-5 tolerance.
"""
if chunk_length is not None:
self.n_samples = chunk_length * self.sampling_rate
self.nb_max_frames = self.n_samples // self.hop_length
if padding:
waveform = np.pad(waveform, [(0, self.n_samples)])

View File

@@ -19,15 +19,21 @@ class Tokenizer:
self.tokenizer = tokenizer
if multilingual:
if task not in _TASKS:
raise ValueError(
"'%s' is not a valid task (accepted tasks: %s)"
% (task, ", ".join(_TASKS))
)
if language not in _LANGUAGE_CODES:
raise ValueError(
"'%s' is not a valid language code (accepted language codes: %s)"
% (language, ", ".join(_LANGUAGE_CODES))
)
self.task = self.tokenizer.token_to_id("<|%s|>" % task)
if self.task is None:
raise ValueError("%s is not a valid task" % task)
self.language_code = language
self.language = self.tokenizer.token_to_id("<|%s|>" % language)
if self.language is None:
raise ValueError("%s is not a valid language code" % language)
self.language_code = language
else:
self.task = None
self.language = None
@@ -102,7 +108,7 @@ class Tokenizer:
def split_to_word_tokens(
self, tokens: List[int]
) -> Tuple[List[str], List[List[int]]]:
if self.language_code in {"zh", "ja", "th", "lo", "my"}:
if self.language_code in {"zh", "ja", "th", "lo", "my", "yue"}:
# These languages don't typically use spaces, so it is difficult to split words
# without morpheme analysis. Here, we instead split words at any
# position where the tokens are decoded as valid unicode points
@@ -161,3 +167,112 @@ class Tokenizer:
word_tokens[-1].extend(subword_tokens)
return words, word_tokens
_TASKS = (
"transcribe",
"translate",
)
_LANGUAGE_CODES = (
"af",
"am",
"ar",
"as",
"az",
"ba",
"be",
"bg",
"bn",
"bo",
"br",
"bs",
"ca",
"cs",
"cy",
"da",
"de",
"el",
"en",
"es",
"et",
"eu",
"fa",
"fi",
"fo",
"fr",
"gl",
"gu",
"ha",
"haw",
"he",
"hi",
"hr",
"ht",
"hu",
"hy",
"id",
"is",
"it",
"ja",
"jw",
"ka",
"kk",
"km",
"kn",
"ko",
"la",
"lb",
"ln",
"lo",
"lt",
"lv",
"mg",
"mi",
"mk",
"ml",
"mn",
"mr",
"ms",
"mt",
"my",
"ne",
"nl",
"nn",
"no",
"oc",
"pa",
"pl",
"ps",
"pt",
"ro",
"ru",
"sa",
"sd",
"si",
"sk",
"sl",
"sn",
"so",
"sq",
"sr",
"su",
"sv",
"sw",
"ta",
"te",
"tg",
"th",
"tk",
"tl",
"tr",
"tt",
"uk",
"ur",
"uz",
"vi",
"yi",
"yo",
"zh",
"yue",
)

View File

@@ -1,8 +1,10 @@
import itertools
import json
import logging
import os
import zlib
from inspect import signature
from typing import BinaryIO, Iterable, List, NamedTuple, Optional, Tuple, Union
import ctranslate2
@@ -11,8 +13,8 @@ import tokenizers
from faster_whisper.audio import decode_audio
from faster_whisper.feature_extractor import FeatureExtractor
from faster_whisper.tokenizer import Tokenizer
from faster_whisper.utils import download_model, format_timestamp, get_logger
from faster_whisper.tokenizer import _LANGUAGE_CODES, Tokenizer
from faster_whisper.utils import download_model, format_timestamp, get_end, get_logger
from faster_whisper.vad import (
SpeechTimestampsMap,
VadOptions,
@@ -47,10 +49,13 @@ class TranscriptionOptions(NamedTuple):
best_of: int
patience: float
length_penalty: float
repetition_penalty: float
no_repeat_ngram_size: int
log_prob_threshold: Optional[float]
no_speech_threshold: Optional[float]
compression_ratio_threshold: Optional[float]
condition_on_previous_text: bool
prompt_reset_on_temperature: float
temperatures: List[float]
initial_prompt: Optional[Union[str, Iterable[int]]]
prefix: Optional[str]
@@ -61,12 +66,16 @@ class TranscriptionOptions(NamedTuple):
word_timestamps: bool
prepend_punctuations: str
append_punctuations: str
max_new_tokens: Optional[int]
clip_timestamps: Union[str, List[float]]
hallucination_silence_threshold: Optional[float]
class TranscriptionInfo(NamedTuple):
language: str
language_probability: float
duration: float
duration_after_vad: float
all_language_probs: Optional[List[Tuple[str, float]]]
transcription_options: TranscriptionOptions
vad_options: VadOptions
@@ -88,8 +97,8 @@ class WhisperModel:
Args:
model_size_or_path: Size of the model to use (tiny, tiny.en, base, base.en,
small, small.en, medium, medium.en, large-v1, or large-v2), a path to a converted
model directory, or a CTranslate2-converted Whisper model ID from the Hugging Face Hub.
small, small.en, medium, medium.en, large-v1, large-v2, large-v3, or large), a path to a
converted model directory, or a CTranslate2-converted Whisper model ID from the HF Hub.
When a size or a model ID is configured, the converted model is downloaded
from the Hugging Face Hub.
device: Device to use for computation ("cpu", "cuda", "auto").
@@ -138,7 +147,8 @@ class WhisperModel:
"openai/whisper-tiny" + ("" if self.model.is_multilingual else ".en")
)
self.feature_extractor = FeatureExtractor()
self.feat_kwargs = self._get_feature_kwargs(model_path)
self.feature_extractor = FeatureExtractor(**self.feat_kwargs)
self.num_samples_per_token = self.feature_extractor.hop_length * 2
self.frames_per_second = (
self.feature_extractor.sampling_rate // self.feature_extractor.hop_length
@@ -150,6 +160,27 @@ class WhisperModel:
self.time_precision = 0.02
self.max_length = 448
@property
def supported_languages(self) -> List[str]:
"""The languages supported by the model."""
return list(_LANGUAGE_CODES) if self.model.is_multilingual else ["en"]
def _get_feature_kwargs(self, model_path) -> dict:
preprocessor_config_file = os.path.join(model_path, "preprocessor_config.json")
config = {}
if os.path.isfile(preprocessor_config_file):
try:
with open(preprocessor_config_file, "r", encoding="utf-8") as json_file:
config = json.load(json_file)
valid_keys = signature(FeatureExtractor.__init__).parameters.keys()
config = {k: v for k, v in config.items() if k in valid_keys}
except json.JSONDecodeError as e:
self.logger.warning(
"Could not load preprocessor_config.json: %s", str(e)
)
return config
def transcribe(
self,
audio: Union[str, BinaryIO, np.ndarray],
@@ -159,6 +190,8 @@ class WhisperModel:
best_of: int = 5,
patience: float = 1,
length_penalty: float = 1,
repetition_penalty: float = 1,
no_repeat_ngram_size: int = 0,
temperature: Union[float, List[float], Tuple[float, ...]] = [
0.0,
0.2,
@@ -171,6 +204,7 @@ class WhisperModel:
log_prob_threshold: Optional[float] = -1.0,
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = True,
prompt_reset_on_temperature: float = 0.5,
initial_prompt: Optional[Union[str, Iterable[int]]] = None,
prefix: Optional[str] = None,
suppress_blank: bool = True,
@@ -182,6 +216,10 @@ class WhisperModel:
append_punctuations: str = "\"'.。,!?::”)]}、",
vad_filter: bool = False,
vad_parameters: Optional[Union[dict, VadOptions]] = None,
max_new_tokens: Optional[int] = None,
chunk_length: Optional[int] = None,
clip_timestamps: Union[str, List[float]] = "0",
hallucination_silence_threshold: Optional[float] = None,
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
"""Transcribes an input file.
@@ -195,6 +233,9 @@ class WhisperModel:
best_of: Number of candidates when sampling with non-zero temperature.
patience: Beam search patience factor.
length_penalty: Exponential length penalty constant.
repetition_penalty: Penalty applied to the score of previously generated tokens
(set > 1 to penalize).
no_repeat_ngram_size: Prevent repetitions of ngrams with this size (set 0 to disable).
temperature: Temperature for sampling. It can be a tuple of temperatures,
which will be successively used upon failures according to either
`compression_ratio_threshold` or `log_prob_threshold`.
@@ -209,6 +250,8 @@ class WhisperModel:
as a prompt for the next window; disabling may make the text inconsistent across
windows, but the model becomes less prone to getting stuck in a failure loop,
such as repetition looping or timestamps going out of sync.
prompt_reset_on_temperature: Resets prompt if temperature is above this value.
Arg has effect only if condition_on_previous_text is True.
initial_prompt: Optional text string or iterable of token ids to provide as a
prompt for the first window.
prefix: Optional text to provide as a prefix for the first window.
@@ -228,6 +271,16 @@ class WhisperModel:
https://github.com/snakers4/silero-vad.
vad_parameters: Dictionary of Silero VAD parameters or VadOptions class (see available
parameters and default values in the class `VadOptions`).
max_new_tokens: Maximum number of new tokens to generate per-chunk. If not set,
the maximum will be set by the default max_length.
chunk_length: The length of audio segments. If it is not None, it will overwrite the
default chunk_length of the FeatureExtractor.
clip_timestamps: Union[str, List[float]]
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to
process. The last end timestamp defaults to the end of the file.
hallucination_silence_threshold: Optional[float]
When word_timestamps is True, skip silent periods longer than this threshold
(in seconds) when a possible hallucination is detected
Returns:
A tuple with:
@@ -241,6 +294,7 @@ class WhisperModel:
audio = decode_audio(audio, sampling_rate=sampling_rate)
duration = audio.shape[0] / sampling_rate
duration_after_vad = duration
self.logger.info(
"Processing audio with duration %s", format_timestamp(duration)
@@ -253,10 +307,11 @@ class WhisperModel:
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
self.logger.info(
"VAD filter removed %s of audio",
format_timestamp(duration - (audio.shape[0] / sampling_rate)),
format_timestamp(duration - duration_after_vad),
)
if self.logger.isEnabledFor(logging.DEBUG):
@@ -275,7 +330,7 @@ class WhisperModel:
else:
speech_chunks = None
features = self.feature_extractor(audio)
features = self.feature_extractor(audio, chunk_length=chunk_length)
encoder_output = None
all_language_probs = None
@@ -301,6 +356,13 @@ class WhisperModel:
language_probability,
)
else:
if not self.model.is_multilingual and language != "en":
self.logger.warning(
"The current model is English-only but the language parameter is set to '%s'; "
"using 'en' instead." % language
)
language = "en"
language_probability = 1
tokenizer = Tokenizer(
@@ -315,10 +377,13 @@ class WhisperModel:
best_of=best_of,
patience=patience,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
compression_ratio_threshold=compression_ratio_threshold,
condition_on_previous_text=condition_on_previous_text,
prompt_reset_on_temperature=prompt_reset_on_temperature,
temperatures=(
temperature if isinstance(temperature, (list, tuple)) else [temperature]
),
@@ -331,6 +396,9 @@ class WhisperModel:
word_timestamps=word_timestamps,
prepend_punctuations=prepend_punctuations,
append_punctuations=append_punctuations,
max_new_tokens=max_new_tokens,
clip_timestamps=clip_timestamps,
hallucination_silence_threshold=hallucination_silence_threshold,
)
segments = self.generate_segments(features, tokenizer, options, encoder_output)
@@ -342,6 +410,7 @@ class WhisperModel:
language=language,
language_probability=language_probability,
duration=duration,
duration_after_vad=duration_after_vad,
transcription_options=options,
vad_options=vad_parameters,
all_language_probs=all_language_probs,
@@ -357,8 +426,33 @@ class WhisperModel:
encoder_output: Optional[ctranslate2.StorageView] = None,
) -> Iterable[Segment]:
content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
content_duration = float(content_frames * self.feature_extractor.time_per_frame)
if isinstance(options.clip_timestamps, str):
TranscriptionOptions.clip_timestamps = [
float(ts)
for ts in (
options.clip_timestamps.split(",")
if options.clip_timestamps
else []
)
]
seek_points: List[int] = [
round(ts * self.frames_per_second) for ts in options.clip_timestamps
]
if len(seek_points) == 0:
seek_points.append(0)
if len(seek_points) % 2 == 1:
seek_points.append(content_frames)
seek_clips: List[Tuple[int, int]] = list(
zip(seek_points[::2], seek_points[1::2])
)
punctuation = "\"'“¿([{-\"'.。,!?::”)]}、"
idx = 0
seek = 0
clip_idx = 0
seek = seek_clips[clip_idx][0]
all_tokens = []
prompt_reset_since = 0
@@ -371,12 +465,32 @@ class WhisperModel:
all_tokens.extend(options.initial_prompt)
last_speech_timestamp = 0.0
while seek < content_frames:
# NOTE: This loop is obscurely flattened to make the diff readable.
# A later commit should turn this into a simpler nested loop.
# for seek_clip_start, seek_clip_end in seek_clips:
# while seek < seek_clip_end
while clip_idx < len(seek_clips):
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
if seek_clip_end > content_frames:
seek_clip_end = content_frames
if seek < seek_clip_start:
seek = seek_clip_start
if seek >= seek_clip_end:
clip_idx += 1
if clip_idx < len(seek_clips):
seek = seek_clips[clip_idx][0]
continue
time_offset = seek * self.feature_extractor.time_per_frame
segment = features[:, seek : seek + self.feature_extractor.nb_max_frames]
segment_size = min(
self.feature_extractor.nb_max_frames, content_frames - seek
window_end_time = float(
(seek + self.feature_extractor.nb_max_frames)
* self.feature_extractor.time_per_frame
)
segment_size = min(
self.feature_extractor.nb_max_frames,
content_frames - seek,
seek_clip_end - seek,
)
segment = features[:, seek : seek + segment_size]
segment_duration = segment_size * self.feature_extractor.time_per_frame
if self.logger.isEnabledFor(logging.DEBUG):
@@ -392,7 +506,7 @@ class WhisperModel:
prefix=options.prefix if seek == 0 else None,
)
if encoder_output is None:
if seek > 0 or encoder_output is None:
encoder_output = self.encode(segment)
(
@@ -429,10 +543,33 @@ class WhisperModel:
previous_seek = seek
current_segments = []
# anomalous words are very long/short/improbable
def word_anomaly_score(word: dict) -> float:
probability = word.get("probability", 0.0)
duration = word["end"] - word["start"]
score = 0.0
if probability < 0.15:
score += 1.0
if duration < 0.133:
score += (0.133 - duration) * 15
if duration > 2.0:
score += duration - 2.0
return score
def is_segment_anomaly(segment: Optional[dict]) -> bool:
if segment is None or not segment["words"]:
return False
words = [w for w in segment["words"] if w["word"] not in punctuation]
words = words[:8]
score = sum(word_anomaly_score(w) for w in words)
return score >= 3 or score + 0.01 >= len(words)
def next_words_segment(segments: List[dict]) -> Optional[dict]:
return next((s for s in segments if s["words"]), None)
single_timestamp_ending = (
len(tokens) >= 2
and tokens[-2] < tokenizer.timestamp_begin
and tokens[-1] >= tokenizer.timestamp_begin
and tokens[-2] < tokenizer.timestamp_begin <= tokens[-1]
)
consecutive_timestamps = [
@@ -515,20 +652,70 @@ class WhisperModel:
last_speech_timestamp=last_speech_timestamp,
)
word_end_timestamps = [
w["end"] for s in current_segments for w in s["words"]
]
if len(word_end_timestamps) > 0:
last_speech_timestamp = word_end_timestamps[-1]
if not single_timestamp_ending and len(word_end_timestamps) > 0:
seek_shift = round(
(word_end_timestamps[-1] - time_offset) * self.frames_per_second
)
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
seek = round(last_word_end * self.frames_per_second)
if seek_shift > 0:
seek = previous_seek + seek_shift
# skip silence before possible hallucinations
if options.hallucination_silence_threshold is not None:
threshold = options.hallucination_silence_threshold
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
remaining_duration = window_end_time - last_word_end
if remaining_duration > threshold:
seek = round(last_word_end * self.frames_per_second)
else:
seek = previous_seek + segment_size
encoder_output = None
# if first segment might be a hallucination, skip leading silence
first_segment = next_words_segment(current_segments)
if first_segment is not None and is_segment_anomaly(first_segment):
gap = first_segment["start"] - time_offset
if gap > threshold:
seek = previous_seek + round(gap * self.frames_per_second)
continue
# skip silence before any possible hallucination that is surrounded
# by silence or more hallucinations
hal_last_end = last_speech_timestamp
for si in range(len(current_segments)):
segment = current_segments[si]
if not segment["words"]:
continue
if is_segment_anomaly(segment):
next_segment = next_words_segment(
current_segments[si + 1 :]
)
if next_segment is not None:
hal_next_start = next_segment["words"][0]["start"]
else:
hal_next_start = time_offset + segment_duration
silence_before = (
segment["start"] - hal_last_end > threshold
or segment["start"] < threshold
or segment["start"] - time_offset < 2.0
)
silence_after = (
hal_next_start - segment["end"] > threshold
or is_segment_anomaly(next_segment)
or window_end_time - segment["end"] < 2.0
)
if silence_before and silence_after:
seek = round(
max(time_offset + 1, segment["start"])
* self.frames_per_second
)
if content_duration - segment["end"] < threshold:
seek = content_frames
current_segments[si:] = []
break
hal_last_end = segment["end"]
last_word_end = get_end(current_segments)
if last_word_end is not None:
last_speech_timestamp = last_word_end
for segment in current_segments:
tokens = segment["tokens"]
@@ -558,7 +745,17 @@ class WhisperModel:
),
)
if not options.condition_on_previous_text or temperature > 0.5:
if (
not options.condition_on_previous_text
or temperature > options.prompt_reset_on_temperature
):
if options.condition_on_previous_text:
self.logger.debug(
"Reset prompt. prompt_reset_on_temperature threshold is met %f > %f",
temperature,
options.prompt_reset_on_temperature,
)
prompt_reset_since = len(all_tokens)
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
@@ -578,14 +775,28 @@ class WhisperModel:
tokenizer: Tokenizer,
options: TranscriptionOptions,
) -> Tuple[ctranslate2.models.WhisperGenerationResult, float, float, float]:
result = None
avg_logprob = None
final_temperature = None
compression_ratio = None
decode_result = None
all_results = []
below_cr_threshold_results = []
max_initial_timestamp_index = int(
round(options.max_initial_timestamp / self.time_precision)
)
if options.max_new_tokens is not None:
max_length = len(prompt) + options.max_new_tokens
else:
max_length = self.max_length
if max_length > self.max_length:
raise ValueError(
f"The length of the prompt is {len(prompt)}, and the `max_new_tokens` "
f"{max_length - len(prompt)}. Thus, the combined length of the prompt "
f"and `max_new_tokens` is: {max_length}. This exceeds the "
f"`max_length` of the Whisper model: {self.max_length}. "
"You should either reduce the length of your prompt, or "
"reduce the value of `max_new_tokens`, "
f"so that their combined length is less that {self.max_length}."
)
for temperature in options.temperatures:
if temperature > 0:
@@ -601,12 +812,13 @@ class WhisperModel:
"patience": options.patience,
}
final_temperature = temperature
result = self.model.generate(
encoder_output,
[prompt],
length_penalty=options.length_penalty,
max_length=self.max_length,
repetition_penalty=options.repetition_penalty,
no_repeat_ngram_size=options.no_repeat_ngram_size,
max_length=max_length,
return_scores=True,
return_no_speech_prob=True,
suppress_blank=options.suppress_blank,
@@ -625,20 +837,28 @@ class WhisperModel:
text = tokenizer.decode(tokens).strip()
compression_ratio = get_compression_ratio(text)
decode_result = (
result,
avg_logprob,
temperature,
compression_ratio,
)
all_results.append(decode_result)
needs_fallback = False
if (
options.compression_ratio_threshold is not None
and compression_ratio > options.compression_ratio_threshold
):
needs_fallback = True # too repetitive
if options.compression_ratio_threshold is not None:
if compression_ratio > options.compression_ratio_threshold:
needs_fallback = True # too repetitive
self.logger.debug(
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
temperature,
compression_ratio,
options.compression_ratio_threshold,
)
self.logger.debug(
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
temperature,
compression_ratio,
options.compression_ratio_threshold,
)
else:
below_cr_threshold_results.append(decode_result)
if (
options.log_prob_threshold is not None
@@ -656,13 +876,27 @@ class WhisperModel:
if (
options.no_speech_threshold is not None
and result.no_speech_prob > options.no_speech_threshold
and options.log_prob_threshold is not None
and avg_logprob < options.log_prob_threshold
):
needs_fallback = False # silence
if not needs_fallback:
break
else:
# all failed, select the result with the highest average log probability
decode_result = max(
below_cr_threshold_results or all_results, key=lambda x: x[1]
)
# to pass final temperature for prompt_reset_on_temperature
decode_result = (
decode_result[0],
decode_result[1],
temperature,
decode_result[3],
)
return result, avg_logprob, final_temperature, compression_ratio
return decode_result
def get_prompt(
self,
@@ -686,6 +920,8 @@ class WhisperModel:
prefix_tokens = tokenizer.encode(" " + prefix.strip())
if len(prefix_tokens) >= self.max_length // 2:
prefix_tokens = prefix_tokens[: self.max_length // 2 - 1]
if not without_timestamps:
prompt.append(tokenizer.timestamp_begin)
prompt.extend(prefix_tokens)
return prompt
@@ -699,7 +935,7 @@ class WhisperModel:
prepend_punctuations: str,
append_punctuations: str,
last_speech_timestamp: float,
):
) -> None:
if len(segments) == 0:
return
@@ -715,13 +951,12 @@ class WhisperModel:
word_durations = np.array([word["end"] - word["start"] for word in alignment])
word_durations = word_durations[word_durations.nonzero()]
median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
median_duration = min(0.7, float(median_duration))
max_duration = median_duration * 2
# hack: truncate long words at sentence boundaries.
# a better segmentation algorithm based on VAD should be able to replace this.
if len(word_durations) > 0:
median_duration = np.median(word_durations)
max_duration = median_duration * 2
sentence_end_marks = ".。!?"
# ensure words at sentence boundaries
# are not longer than twice the median word duration.
@@ -838,6 +1073,13 @@ class WhisperModel:
words, word_tokens = tokenizer.split_to_word_tokens(
text_tokens + [tokenizer.eot]
)
if len(word_tokens) <= 1:
# return on eot only
# >>> np.pad([], (1, 0))
# array([0.])
# This results in crashes when we lookup jump_times with float, like
# IndexError: arrays used as indices must be of integer (or boolean) type
return []
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
if len(word_boundaries) <= 1:
return []
@@ -907,7 +1149,10 @@ def get_compression_ratio(text: str) -> float:
return len(text_bytes) / len(zlib.compress(text_bytes))
def get_suppressed_tokens(tokenizer, suppress_tokens):
def get_suppressed_tokens(
tokenizer: Tokenizer,
suppress_tokens: Optional[List[int]],
) -> Optional[List[int]]:
if not suppress_tokens or -1 in suppress_tokens:
return suppress_tokens
@@ -928,7 +1173,7 @@ def get_suppressed_tokens(tokenizer, suppress_tokens):
return sorted(set(suppress_tokens))
def merge_punctuations(alignment: List[dict], prepended: str, appended: str):
def merge_punctuations(alignment: List[dict], prepended: str, appended: str) -> None:
# merge prepended punctuations
i = len(alignment) - 2
j = len(alignment) - 1

View File

@@ -2,25 +2,35 @@ import logging
import os
import re
from typing import Optional
from typing import List, Optional
import huggingface_hub
import requests
from tqdm.auto import tqdm
_MODELS = (
"tiny.en",
"tiny",
"base.en",
"base",
"small.en",
"small",
"medium.en",
"medium",
"large-v1",
"large-v2",
)
_MODELS = {
"tiny.en": "Systran/faster-whisper-tiny.en",
"tiny": "Systran/faster-whisper-tiny",
"base.en": "Systran/faster-whisper-base.en",
"base": "Systran/faster-whisper-base",
"small.en": "Systran/faster-whisper-small.en",
"small": "Systran/faster-whisper-small",
"medium.en": "Systran/faster-whisper-medium.en",
"medium": "Systran/faster-whisper-medium",
"large-v1": "Systran/faster-whisper-large-v1",
"large-v2": "Systran/faster-whisper-large-v2",
"large-v3": "Systran/faster-whisper-large-v3",
"large": "Systran/faster-whisper-large-v3",
"distil-large-v2": "Systran/faster-distil-whisper-large-v2",
"distil-medium.en": "Systran/faster-distil-whisper-medium.en",
"distil-small.en": "Systran/faster-distil-whisper-small.en",
}
def available_models() -> List[str]:
"""Returns the names of available models."""
return list(_MODELS.keys())
def get_assets_path():
@@ -41,12 +51,11 @@ def download_model(
):
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
The model is downloaded from https://huggingface.co/guillaumekln.
Args:
size_or_id: Size of the model to download (tiny, tiny.en, base, base.en, small, small.en,
medium, medium.en, large-v1, or large-v2), or a CTranslate2-converted model ID
from the Hugging Face Hub (e.g. guillaumekln/faster-whisper-large-v2).
size_or_id: Size of the model to download from https://huggingface.co/guillaumekln
(tiny, tiny.en, base, base.en, small, small.en medium, medium.en, large-v1, large-v2,
large-v3, large), or a CTranslate2-converted model ID from the Hugging Face Hub
(e.g. Systran/faster-whisper-large-v3).
output_dir: Directory where the model should be saved. If not set, the model is saved in
the cache directory.
local_files_only: If True, avoid downloading the file and return the path to the local
@@ -62,16 +71,16 @@ def download_model(
if re.match(r".*/.*", size_or_id):
repo_id = size_or_id
else:
if size_or_id not in _MODELS:
repo_id = _MODELS.get(size_or_id)
if repo_id is None:
raise ValueError(
"Invalid model size '%s', expected one of: %s"
% (size_or_id, ", ".join(_MODELS))
% (size_or_id, ", ".join(_MODELS.keys()))
)
repo_id = "guillaumekln/faster-whisper-%s" % size_or_id
allow_patterns = [
"config.json",
"preprocessor_config.json",
"model.bin",
"tokenizer.json",
"vocabulary.*",
@@ -137,3 +146,10 @@ class disabled_tqdm(tqdm):
def __init__(self, *args, **kwargs):
kwargs["disable"] = True
super().__init__(*args, **kwargs)
def get_end(segments: List[dict]) -> Optional[float]:
return next(
(w["end"] for s in reversed(segments) for w in reversed(s["words"])),
segments[-1]["end"] if segments else None,
)

View File

@@ -1,3 +1,3 @@
"""Version information."""
__version__ = "0.6.0"
__version__ = "1.0.0"

View File

@@ -1,5 +1,5 @@
av==10.*
ctranslate2>=3.10,<4
av==11.*
ctranslate2>=4.0,<5
huggingface_hub>=0.13
tokenizers==0.13.*
tokenizers>=0.13,<0.16
onnxruntime>=1.14,<2

View File

@@ -3,6 +3,11 @@ import os
from faster_whisper import WhisperModel, decode_audio
def test_supported_languages():
model = WhisperModel("tiny.en")
assert model.supported_languages == ["en"]
def test_transcribe(jfk_path):
model = WhisperModel("tiny")
segments, info = model.transcribe(jfk_path, word_timestamps=True)
@@ -34,6 +39,24 @@ def test_transcribe(jfk_path):
assert segment.end == segment.words[-1].end
def test_prefix_with_timestamps(jfk_path):
model = WhisperModel("tiny")
segments, _ = model.transcribe(jfk_path, prefix="And so my fellow Americans")
segments = list(segments)
assert len(segments) == 1
segment = segments[0]
assert segment.text == (
" And so my fellow Americans ask not what your country can do for you, "
"ask what you can do for your country."
)
assert segment.start == 0
assert 10 < segment.end < 11
def test_vad(jfk_path):
model = WhisperModel("tiny")
segments, info = model.transcribe(

View File

@@ -1,6 +1,12 @@
import os
from faster_whisper import download_model
from faster_whisper import available_models, download_model
def test_available_models():
models = available_models()
assert isinstance(models, list)
assert "tiny" in models
def test_download_model(tmpdir):