Compare commits
48 Commits
3b4a6aa1c2
...
06d32bf0c1
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
06d32bf0c1 | ||
|
|
30d6043e90 | ||
|
|
22c75d0cc3 | ||
|
|
092067208b | ||
|
|
6ffcbdfbc2 | ||
|
|
52695567c9 | ||
|
|
c6b28ed3a0 | ||
|
|
4ab646035f | ||
|
|
f144e4c83d | ||
|
|
3aec421849 | ||
|
|
64b9f244bd | ||
|
|
00efce1696 | ||
|
|
ad3c83045b | ||
|
|
72ff979a2e | ||
|
|
615de0d2d9 | ||
|
|
44f7e58947 | ||
|
|
ebcfd6b964 | ||
|
|
19329a3611 | ||
|
|
65094b779e | ||
|
|
9641d5f56a | ||
|
|
e1a218fab1 | ||
|
|
3084409633 | ||
|
|
5a0541ea7d | ||
|
|
e94711bb5c | ||
|
|
0048844f54 | ||
|
|
a49097e655 | ||
|
|
81086f6d33 | ||
|
|
f697945691 | ||
|
|
727ab81f31 | ||
|
|
0285d46f6f | ||
|
|
ad388cd394 | ||
|
|
4a41746e55 | ||
|
|
1e6eb967c9 | ||
|
|
f0ff12965a | ||
|
|
5871858a5f | ||
|
|
e87fbf8a49 | ||
|
|
7b271da035 | ||
|
|
1562b02345 | ||
|
|
1ce16652ee | ||
|
|
857be6f621 | ||
|
|
1a1eb1a027 | ||
|
|
5c17de1771 | ||
|
|
0f55c436fe | ||
|
|
e786e26f75 | ||
|
|
687db319e0 | ||
|
|
171d90dd1f | ||
|
|
0e051a5b77 | ||
|
|
2a37390fed |
119
README.md
119
README.md
@@ -8,6 +8,8 @@ This implementation is up to 4 times faster than [openai/whisper](https://github
|
||||
|
||||
## Benchmark
|
||||
|
||||
### Whisper
|
||||
|
||||
For reference, here's the time and memory usage that are required to transcribe [**13 minutes**](https://www.youtube.com/watch?v=0u7tTptBo9I) of audio using different implementations:
|
||||
|
||||
* [openai/whisper](https://github.com/openai/whisper)@[6dea21fd](https://github.com/openai/whisper/commit/6dea21fd7f7253bfe450f1e2512a0fe47ee2d258)
|
||||
@@ -36,6 +38,71 @@ For reference, here's the time and memory usage that are required to transcribe
|
||||
|
||||
*Executed with 8 threads on a Intel(R) Xeon(R) Gold 6226R.*
|
||||
|
||||
|
||||
### Distil-whisper
|
||||
|
||||
| Implementation | Precision | Beam size | Time | Gigaspeech WER |
|
||||
| --- | --- | --- | --- | --- |
|
||||
| distil-whisper/distil-large-v2 | fp16 | 4 |- | 10.36 |
|
||||
| [faster-distil-large-v2](https://huggingface.co/Systran/faster-distil-whisper-large-v2) | fp16 | 5 | - | 10.28 |
|
||||
| distil-whisper/distil-medium.en | fp16 | 4 | - | 11.21 |
|
||||
| [faster-distil-medium.en](https://huggingface.co/Systran/faster-distil-whisper-medium.en) | fp16 | 5 | - | 11.21 |
|
||||
|
||||
*Executed with CUDA 11.4 on a NVIDIA 3090.*
|
||||
|
||||
<details>
|
||||
<summary>testing details (click to expand)</summary>
|
||||
|
||||
For `distil-whisper/distil-large-v2`, the WER is tested with code sample from [link](https://huggingface.co/distil-whisper/distil-large-v2#evaluation). for `faster-distil-whisper`, the WER is tested with setting:
|
||||
```python
|
||||
from faster_whisper import WhisperModel
|
||||
|
||||
model_size = "distil-large-v2"
|
||||
# model_size = "distil-medium.en"
|
||||
# Run on GPU with FP16
|
||||
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
||||
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en")
|
||||
```
|
||||
</details>
|
||||
|
||||
## Requirements
|
||||
|
||||
* Python 3.8 or greater
|
||||
|
||||
Unlike openai-whisper, FFmpeg does **not** need to be installed on the system. The audio is decoded with the Python library [PyAV](https://github.com/PyAV-Org/PyAV) which bundles the FFmpeg libraries in its package.
|
||||
|
||||
### GPU
|
||||
|
||||
GPU execution requires the following NVIDIA libraries to be installed:
|
||||
|
||||
* [cuBLAS for CUDA 11](https://developer.nvidia.com/cublas)
|
||||
* [cuDNN 8 for CUDA 11](https://developer.nvidia.com/cudnn)
|
||||
|
||||
There are multiple ways to install these libraries. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.
|
||||
|
||||
<details>
|
||||
<summary>Other installation methods (click to expand)</summary>
|
||||
|
||||
#### Use Docker
|
||||
|
||||
The libraries are installed in this official NVIDIA Docker image: `nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04`.
|
||||
|
||||
#### Install with `pip` (Linux only)
|
||||
|
||||
On Linux these libraries can be installed with `pip`. Note that `LD_LIBRARY_PATH` must be set before launching Python.
|
||||
|
||||
```bash
|
||||
pip install nvidia-cublas-cu11 nvidia-cudnn-cu11
|
||||
|
||||
export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
|
||||
```
|
||||
|
||||
#### Download the libraries from Purfview's repository (Windows & Linux)
|
||||
|
||||
Purfview's [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) provides the required NVIDIA libraries for Windows & Linux in a [single archive](https://github.com/Purfview/whisper-standalone-win/releases/tag/libs). Decompress the archive and place the libraries in a directory included in the `PATH`.
|
||||
|
||||
</details>
|
||||
|
||||
## Installation
|
||||
|
||||
The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/):
|
||||
@@ -44,26 +111,31 @@ The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/
|
||||
pip install faster-whisper
|
||||
```
|
||||
|
||||
**Other installation methods:**
|
||||
<details>
|
||||
<summary>Other installation methods (click to expand)</summary>
|
||||
|
||||
### Install the master branch
|
||||
|
||||
```bash
|
||||
# Install the master branch:
|
||||
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/refs/heads/master.tar.gz"
|
||||
```
|
||||
|
||||
# Install a specific commit:
|
||||
### Install a specific commit
|
||||
|
||||
```bash
|
||||
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
|
||||
```
|
||||
|
||||
### GPU support
|
||||
|
||||
GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be installed on the system. Please refer to the [CTranslate2 documentation](https://opennmt.net/CTranslate2/installation.html).
|
||||
</details>
|
||||
|
||||
## Usage
|
||||
|
||||
### Faster-whisper
|
||||
|
||||
```python
|
||||
from faster_whisper import WhisperModel
|
||||
|
||||
model_size = "large-v2"
|
||||
model_size = "large-v3"
|
||||
|
||||
# Run on GPU with FP16
|
||||
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
||||
@@ -87,6 +159,18 @@ for segment in segments:
|
||||
segments, _ = model.transcribe("audio.mp3")
|
||||
segments = list(segments) # The transcription will actually run here.
|
||||
```
|
||||
### Faster-distil-whisper
|
||||
For usage of `faster-ditil-whisper`, please refer to: https://github.com/guillaumekln/faster-whisper/issues/533
|
||||
|
||||
```python
|
||||
model_size = "distil-large-v2"
|
||||
# model_size = "distil-medium.en"
|
||||
model = WhisperModel(model_size, device="cuda", compute_type="float16")
|
||||
segments, info = model.transcribe("audio.mp3", beam_size=5,
|
||||
language="en", max_new_tokens=128, condition_on_previous_text=False)
|
||||
|
||||
```
|
||||
NOTE: Empirically, `condition_on_previous_text=True` will degrade the performance of `faster-distil-whisper` for long audio. Degradation on the first chunk was observed with `initial_prompt` too.
|
||||
|
||||
### Word-level timestamps
|
||||
|
||||
@@ -135,25 +219,32 @@ See more model and transcription options in the [`WhisperModel`](https://github.
|
||||
|
||||
Here is a non exhaustive list of open-source projects using faster-whisper. Feel free to add your project to the list!
|
||||
|
||||
|
||||
* [WhisperX](https://github.com/m-bain/whisperX) is an award-winning Python library that offers speaker diarization and accurate word-level timestamps using wav2vec2 alignment
|
||||
* [whisper-ctranslate2](https://github.com/Softcatala/whisper-ctranslate2) is a command line client based on faster-whisper and compatible with the original client from openai/whisper.
|
||||
* [whisper-diarize](https://github.com/MahmoudAshraf97/whisper-diarization) is a speaker diarization tool that is based on faster-whisper and NVIDIA NeMo.
|
||||
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) contains the portable ready to run binaries of faster-whisper for Windows.
|
||||
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) Standalone CLI executables of faster-whisper for Windows, Linux & macOS.
|
||||
* [asr-sd-pipeline](https://github.com/hedrergudene/asr-sd-pipeline) provides a scalable, modular, end to end multi-speaker speech to text solution implemented using AzureML pipelines.
|
||||
* [Open-Lyrics](https://github.com/zh-plus/Open-Lyrics) is a Python library that transcribes voice files using faster-whisper, and translates/polishes the resulting text into `.lrc` files in the desired language using OpenAI-GPT.
|
||||
* [wscribe](https://github.com/geekodour/wscribe) is a flexible transcript generation tool supporting faster-whisper, it can export word level transcript and the exported transcript then can be edited with [wscribe-editor](https://github.com/geekodour/wscribe-editor)
|
||||
* [aTrain](https://github.com/BANDAS-Center/aTrain) is a graphical user interface implementation of faster-whisper developed at the BANDAS-Center at the University of Graz for transcription and diarization in Windows ([Windows Store App](https://apps.microsoft.com/detail/atrain/9N15Q44SZNS2)) and Linux.
|
||||
* [Whisper-Streaming](https://github.com/ufal/whisper_streaming) implements real-time mode for offline Whisper-like speech-to-text models with faster-whisper as the most recommended back-end. It implements a streaming policy with self-adaptive latency based on the actual source complexity, and demonstrates the state of the art.
|
||||
* [WhisperLive](https://github.com/collabora/WhisperLive) is a nearly-live implementation of OpenAI's Whisper which uses faster-whisper as the backend to transcribe audio in real-time.
|
||||
* [Faster-Whisper-Transcriber](https://github.com/BBC-Esq/ctranslate2-faster-whisper-transcriber) is a simple but reliable voice transcriber that provides a user-friendly interface.
|
||||
|
||||
## Model conversion
|
||||
|
||||
When loading a model from its size such as `WhisperModel("large-v2")`, the correspondig CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/guillaumekln).
|
||||
When loading a model from its size such as `WhisperModel("large-v3")`, the corresponding CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/Systran).
|
||||
|
||||
We also provide a script to convert any Whisper models compatible with the Transformers library. They could be the original OpenAI models or user fine-tuned models.
|
||||
|
||||
For example the command below converts the [original "large-v2" Whisper model](https://huggingface.co/openai/whisper-large-v2) and saves the weights in FP16:
|
||||
For example the command below converts the [original "large-v3" Whisper model](https://huggingface.co/openai/whisper-large-v3) and saves the weights in FP16:
|
||||
|
||||
```bash
|
||||
pip install transformers[torch]>=4.23
|
||||
|
||||
ct2-transformers-converter --model openai/whisper-large-v2 --output_dir whisper-large-v2-ct2 \
|
||||
--copy_files tokenizer.json --quantization float16
|
||||
ct2-transformers-converter --model openai/whisper-large-v3 --output_dir whisper-large-v3-ct2
|
||||
--copy_files tokenizer.json preprocessor_config.json --quantization float16
|
||||
```
|
||||
|
||||
* The option `--model` accepts a model name on the Hub or a path to a model directory.
|
||||
@@ -165,12 +256,12 @@ Models can also be converted from the code. See the [conversion API](https://ope
|
||||
|
||||
1. Directly load the model from a local directory:
|
||||
```python
|
||||
model = faster_whisper.WhisperModel('whisper-large-v2-ct2')
|
||||
model = faster_whisper.WhisperModel("whisper-large-v3-ct2")
|
||||
```
|
||||
|
||||
2. [Upload your model to the Hugging Face Hub](https://huggingface.co/docs/transformers/model_sharing#upload-with-the-web-interface) and load it from its name:
|
||||
```python
|
||||
model = faster_whisper.WhisperModel('username/whisper-large-v2-ct2')
|
||||
model = faster_whisper.WhisperModel("username/whisper-large-v3-ct2")
|
||||
```
|
||||
|
||||
## Comparing performance against other implementations
|
||||
|
||||
@@ -1,9 +1,10 @@
|
||||
from faster_whisper.audio import decode_audio
|
||||
from faster_whisper.transcribe import WhisperModel
|
||||
from faster_whisper.utils import download_model, format_timestamp
|
||||
from faster_whisper.utils import available_models, download_model, format_timestamp
|
||||
from faster_whisper.version import __version__
|
||||
|
||||
__all__ = [
|
||||
"available_models",
|
||||
"decode_audio",
|
||||
"WhisperModel",
|
||||
"download_model",
|
||||
|
||||
@@ -6,6 +6,7 @@ system dependencies. FFmpeg does not need to be installed on the system.
|
||||
However, the API is quite low-level so we need to manipulate audio frames directly.
|
||||
"""
|
||||
|
||||
import gc
|
||||
import io
|
||||
import itertools
|
||||
|
||||
@@ -42,7 +43,7 @@ def decode_audio(
|
||||
raw_buffer = io.BytesIO()
|
||||
dtype = None
|
||||
|
||||
with av.open(input_file, metadata_errors="ignore") as container:
|
||||
with av.open(input_file, mode="r", metadata_errors="ignore") as container:
|
||||
frames = container.decode(audio=0)
|
||||
frames = _ignore_invalid_frames(frames)
|
||||
frames = _group_frames(frames, 500000)
|
||||
@@ -53,6 +54,11 @@ def decode_audio(
|
||||
dtype = array.dtype
|
||||
raw_buffer.write(array)
|
||||
|
||||
# It appears that some objects related to the resampler are not freed
|
||||
# unless the garbage collector is manually run.
|
||||
del resampler
|
||||
gc.collect()
|
||||
|
||||
audio = np.frombuffer(raw_buffer.getbuffer(), dtype=dtype)
|
||||
|
||||
# Convert s16 back to f32.
|
||||
|
||||
@@ -142,11 +142,15 @@ class FeatureExtractor:
|
||||
data[f] = np.fft.fft(fft_signal, axis=0)[:num_fft_bins]
|
||||
return data.T
|
||||
|
||||
def __call__(self, waveform, padding=True):
|
||||
def __call__(self, waveform, padding=True, chunk_length=None):
|
||||
"""
|
||||
Compute the log-Mel spectrogram of the provided audio, gives similar results
|
||||
whisper's original torch implementation with 1e-5 tolerance.
|
||||
"""
|
||||
if chunk_length is not None:
|
||||
self.n_samples = chunk_length * self.sampling_rate
|
||||
self.nb_max_frames = self.n_samples // self.hop_length
|
||||
|
||||
if padding:
|
||||
waveform = np.pad(waveform, [(0, self.n_samples)])
|
||||
|
||||
|
||||
@@ -19,15 +19,21 @@ class Tokenizer:
|
||||
self.tokenizer = tokenizer
|
||||
|
||||
if multilingual:
|
||||
if task not in _TASKS:
|
||||
raise ValueError(
|
||||
"'%s' is not a valid task (accepted tasks: %s)"
|
||||
% (task, ", ".join(_TASKS))
|
||||
)
|
||||
|
||||
if language not in _LANGUAGE_CODES:
|
||||
raise ValueError(
|
||||
"'%s' is not a valid language code (accepted language codes: %s)"
|
||||
% (language, ", ".join(_LANGUAGE_CODES))
|
||||
)
|
||||
|
||||
self.task = self.tokenizer.token_to_id("<|%s|>" % task)
|
||||
if self.task is None:
|
||||
raise ValueError("%s is not a valid task" % task)
|
||||
|
||||
self.language_code = language
|
||||
self.language = self.tokenizer.token_to_id("<|%s|>" % language)
|
||||
if self.language is None:
|
||||
raise ValueError("%s is not a valid language code" % language)
|
||||
|
||||
self.language_code = language
|
||||
else:
|
||||
self.task = None
|
||||
self.language = None
|
||||
@@ -102,7 +108,7 @@ class Tokenizer:
|
||||
def split_to_word_tokens(
|
||||
self, tokens: List[int]
|
||||
) -> Tuple[List[str], List[List[int]]]:
|
||||
if self.language_code in {"zh", "ja", "th", "lo", "my"}:
|
||||
if self.language_code in {"zh", "ja", "th", "lo", "my", "yue"}:
|
||||
# These languages don't typically use spaces, so it is difficult to split words
|
||||
# without morpheme analysis. Here, we instead split words at any
|
||||
# position where the tokens are decoded as valid unicode points
|
||||
@@ -161,3 +167,112 @@ class Tokenizer:
|
||||
word_tokens[-1].extend(subword_tokens)
|
||||
|
||||
return words, word_tokens
|
||||
|
||||
|
||||
_TASKS = (
|
||||
"transcribe",
|
||||
"translate",
|
||||
)
|
||||
|
||||
_LANGUAGE_CODES = (
|
||||
"af",
|
||||
"am",
|
||||
"ar",
|
||||
"as",
|
||||
"az",
|
||||
"ba",
|
||||
"be",
|
||||
"bg",
|
||||
"bn",
|
||||
"bo",
|
||||
"br",
|
||||
"bs",
|
||||
"ca",
|
||||
"cs",
|
||||
"cy",
|
||||
"da",
|
||||
"de",
|
||||
"el",
|
||||
"en",
|
||||
"es",
|
||||
"et",
|
||||
"eu",
|
||||
"fa",
|
||||
"fi",
|
||||
"fo",
|
||||
"fr",
|
||||
"gl",
|
||||
"gu",
|
||||
"ha",
|
||||
"haw",
|
||||
"he",
|
||||
"hi",
|
||||
"hr",
|
||||
"ht",
|
||||
"hu",
|
||||
"hy",
|
||||
"id",
|
||||
"is",
|
||||
"it",
|
||||
"ja",
|
||||
"jw",
|
||||
"ka",
|
||||
"kk",
|
||||
"km",
|
||||
"kn",
|
||||
"ko",
|
||||
"la",
|
||||
"lb",
|
||||
"ln",
|
||||
"lo",
|
||||
"lt",
|
||||
"lv",
|
||||
"mg",
|
||||
"mi",
|
||||
"mk",
|
||||
"ml",
|
||||
"mn",
|
||||
"mr",
|
||||
"ms",
|
||||
"mt",
|
||||
"my",
|
||||
"ne",
|
||||
"nl",
|
||||
"nn",
|
||||
"no",
|
||||
"oc",
|
||||
"pa",
|
||||
"pl",
|
||||
"ps",
|
||||
"pt",
|
||||
"ro",
|
||||
"ru",
|
||||
"sa",
|
||||
"sd",
|
||||
"si",
|
||||
"sk",
|
||||
"sl",
|
||||
"sn",
|
||||
"so",
|
||||
"sq",
|
||||
"sr",
|
||||
"su",
|
||||
"sv",
|
||||
"sw",
|
||||
"ta",
|
||||
"te",
|
||||
"tg",
|
||||
"th",
|
||||
"tk",
|
||||
"tl",
|
||||
"tr",
|
||||
"tt",
|
||||
"uk",
|
||||
"ur",
|
||||
"uz",
|
||||
"vi",
|
||||
"yi",
|
||||
"yo",
|
||||
"zh",
|
||||
"yue",
|
||||
)
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
import itertools
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import zlib
|
||||
|
||||
from inspect import signature
|
||||
from typing import BinaryIO, Iterable, List, NamedTuple, Optional, Tuple, Union
|
||||
|
||||
import ctranslate2
|
||||
@@ -11,8 +13,8 @@ import tokenizers
|
||||
|
||||
from faster_whisper.audio import decode_audio
|
||||
from faster_whisper.feature_extractor import FeatureExtractor
|
||||
from faster_whisper.tokenizer import Tokenizer
|
||||
from faster_whisper.utils import download_model, format_timestamp, get_logger
|
||||
from faster_whisper.tokenizer import _LANGUAGE_CODES, Tokenizer
|
||||
from faster_whisper.utils import download_model, format_timestamp, get_end, get_logger
|
||||
from faster_whisper.vad import (
|
||||
SpeechTimestampsMap,
|
||||
VadOptions,
|
||||
@@ -47,10 +49,13 @@ class TranscriptionOptions(NamedTuple):
|
||||
best_of: int
|
||||
patience: float
|
||||
length_penalty: float
|
||||
repetition_penalty: float
|
||||
no_repeat_ngram_size: int
|
||||
log_prob_threshold: Optional[float]
|
||||
no_speech_threshold: Optional[float]
|
||||
compression_ratio_threshold: Optional[float]
|
||||
condition_on_previous_text: bool
|
||||
prompt_reset_on_temperature: float
|
||||
temperatures: List[float]
|
||||
initial_prompt: Optional[Union[str, Iterable[int]]]
|
||||
prefix: Optional[str]
|
||||
@@ -61,12 +66,16 @@ class TranscriptionOptions(NamedTuple):
|
||||
word_timestamps: bool
|
||||
prepend_punctuations: str
|
||||
append_punctuations: str
|
||||
max_new_tokens: Optional[int]
|
||||
clip_timestamps: Union[str, List[float]]
|
||||
hallucination_silence_threshold: Optional[float]
|
||||
|
||||
|
||||
class TranscriptionInfo(NamedTuple):
|
||||
language: str
|
||||
language_probability: float
|
||||
duration: float
|
||||
duration_after_vad: float
|
||||
all_language_probs: Optional[List[Tuple[str, float]]]
|
||||
transcription_options: TranscriptionOptions
|
||||
vad_options: VadOptions
|
||||
@@ -88,8 +97,8 @@ class WhisperModel:
|
||||
|
||||
Args:
|
||||
model_size_or_path: Size of the model to use (tiny, tiny.en, base, base.en,
|
||||
small, small.en, medium, medium.en, large-v1, or large-v2), a path to a converted
|
||||
model directory, or a CTranslate2-converted Whisper model ID from the Hugging Face Hub.
|
||||
small, small.en, medium, medium.en, large-v1, large-v2, large-v3, or large), a path to a
|
||||
converted model directory, or a CTranslate2-converted Whisper model ID from the HF Hub.
|
||||
When a size or a model ID is configured, the converted model is downloaded
|
||||
from the Hugging Face Hub.
|
||||
device: Device to use for computation ("cpu", "cuda", "auto").
|
||||
@@ -138,7 +147,8 @@ class WhisperModel:
|
||||
"openai/whisper-tiny" + ("" if self.model.is_multilingual else ".en")
|
||||
)
|
||||
|
||||
self.feature_extractor = FeatureExtractor()
|
||||
self.feat_kwargs = self._get_feature_kwargs(model_path)
|
||||
self.feature_extractor = FeatureExtractor(**self.feat_kwargs)
|
||||
self.num_samples_per_token = self.feature_extractor.hop_length * 2
|
||||
self.frames_per_second = (
|
||||
self.feature_extractor.sampling_rate // self.feature_extractor.hop_length
|
||||
@@ -150,6 +160,27 @@ class WhisperModel:
|
||||
self.time_precision = 0.02
|
||||
self.max_length = 448
|
||||
|
||||
@property
|
||||
def supported_languages(self) -> List[str]:
|
||||
"""The languages supported by the model."""
|
||||
return list(_LANGUAGE_CODES) if self.model.is_multilingual else ["en"]
|
||||
|
||||
def _get_feature_kwargs(self, model_path) -> dict:
|
||||
preprocessor_config_file = os.path.join(model_path, "preprocessor_config.json")
|
||||
config = {}
|
||||
if os.path.isfile(preprocessor_config_file):
|
||||
try:
|
||||
with open(preprocessor_config_file, "r", encoding="utf-8") as json_file:
|
||||
config = json.load(json_file)
|
||||
valid_keys = signature(FeatureExtractor.__init__).parameters.keys()
|
||||
config = {k: v for k, v in config.items() if k in valid_keys}
|
||||
except json.JSONDecodeError as e:
|
||||
self.logger.warning(
|
||||
"Could not load preprocessor_config.json: %s", str(e)
|
||||
)
|
||||
|
||||
return config
|
||||
|
||||
def transcribe(
|
||||
self,
|
||||
audio: Union[str, BinaryIO, np.ndarray],
|
||||
@@ -159,6 +190,8 @@ class WhisperModel:
|
||||
best_of: int = 5,
|
||||
patience: float = 1,
|
||||
length_penalty: float = 1,
|
||||
repetition_penalty: float = 1,
|
||||
no_repeat_ngram_size: int = 0,
|
||||
temperature: Union[float, List[float], Tuple[float, ...]] = [
|
||||
0.0,
|
||||
0.2,
|
||||
@@ -171,6 +204,7 @@ class WhisperModel:
|
||||
log_prob_threshold: Optional[float] = -1.0,
|
||||
no_speech_threshold: Optional[float] = 0.6,
|
||||
condition_on_previous_text: bool = True,
|
||||
prompt_reset_on_temperature: float = 0.5,
|
||||
initial_prompt: Optional[Union[str, Iterable[int]]] = None,
|
||||
prefix: Optional[str] = None,
|
||||
suppress_blank: bool = True,
|
||||
@@ -182,6 +216,10 @@ class WhisperModel:
|
||||
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
||||
vad_filter: bool = False,
|
||||
vad_parameters: Optional[Union[dict, VadOptions]] = None,
|
||||
max_new_tokens: Optional[int] = None,
|
||||
chunk_length: Optional[int] = None,
|
||||
clip_timestamps: Union[str, List[float]] = "0",
|
||||
hallucination_silence_threshold: Optional[float] = None,
|
||||
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
|
||||
"""Transcribes an input file.
|
||||
|
||||
@@ -195,6 +233,9 @@ class WhisperModel:
|
||||
best_of: Number of candidates when sampling with non-zero temperature.
|
||||
patience: Beam search patience factor.
|
||||
length_penalty: Exponential length penalty constant.
|
||||
repetition_penalty: Penalty applied to the score of previously generated tokens
|
||||
(set > 1 to penalize).
|
||||
no_repeat_ngram_size: Prevent repetitions of ngrams with this size (set 0 to disable).
|
||||
temperature: Temperature for sampling. It can be a tuple of temperatures,
|
||||
which will be successively used upon failures according to either
|
||||
`compression_ratio_threshold` or `log_prob_threshold`.
|
||||
@@ -209,6 +250,8 @@ class WhisperModel:
|
||||
as a prompt for the next window; disabling may make the text inconsistent across
|
||||
windows, but the model becomes less prone to getting stuck in a failure loop,
|
||||
such as repetition looping or timestamps going out of sync.
|
||||
prompt_reset_on_temperature: Resets prompt if temperature is above this value.
|
||||
Arg has effect only if condition_on_previous_text is True.
|
||||
initial_prompt: Optional text string or iterable of token ids to provide as a
|
||||
prompt for the first window.
|
||||
prefix: Optional text to provide as a prefix for the first window.
|
||||
@@ -228,6 +271,16 @@ class WhisperModel:
|
||||
https://github.com/snakers4/silero-vad.
|
||||
vad_parameters: Dictionary of Silero VAD parameters or VadOptions class (see available
|
||||
parameters and default values in the class `VadOptions`).
|
||||
max_new_tokens: Maximum number of new tokens to generate per-chunk. If not set,
|
||||
the maximum will be set by the default max_length.
|
||||
chunk_length: The length of audio segments. If it is not None, it will overwrite the
|
||||
default chunk_length of the FeatureExtractor.
|
||||
clip_timestamps: Union[str, List[float]]
|
||||
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to
|
||||
process. The last end timestamp defaults to the end of the file.
|
||||
hallucination_silence_threshold: Optional[float]
|
||||
When word_timestamps is True, skip silent periods longer than this threshold
|
||||
(in seconds) when a possible hallucination is detected
|
||||
|
||||
Returns:
|
||||
A tuple with:
|
||||
@@ -241,6 +294,7 @@ class WhisperModel:
|
||||
audio = decode_audio(audio, sampling_rate=sampling_rate)
|
||||
|
||||
duration = audio.shape[0] / sampling_rate
|
||||
duration_after_vad = duration
|
||||
|
||||
self.logger.info(
|
||||
"Processing audio with duration %s", format_timestamp(duration)
|
||||
@@ -253,10 +307,11 @@ class WhisperModel:
|
||||
vad_parameters = VadOptions(**vad_parameters)
|
||||
speech_chunks = get_speech_timestamps(audio, vad_parameters)
|
||||
audio = collect_chunks(audio, speech_chunks)
|
||||
duration_after_vad = audio.shape[0] / sampling_rate
|
||||
|
||||
self.logger.info(
|
||||
"VAD filter removed %s of audio",
|
||||
format_timestamp(duration - (audio.shape[0] / sampling_rate)),
|
||||
format_timestamp(duration - duration_after_vad),
|
||||
)
|
||||
|
||||
if self.logger.isEnabledFor(logging.DEBUG):
|
||||
@@ -275,7 +330,7 @@ class WhisperModel:
|
||||
else:
|
||||
speech_chunks = None
|
||||
|
||||
features = self.feature_extractor(audio)
|
||||
features = self.feature_extractor(audio, chunk_length=chunk_length)
|
||||
|
||||
encoder_output = None
|
||||
all_language_probs = None
|
||||
@@ -301,6 +356,13 @@ class WhisperModel:
|
||||
language_probability,
|
||||
)
|
||||
else:
|
||||
if not self.model.is_multilingual and language != "en":
|
||||
self.logger.warning(
|
||||
"The current model is English-only but the language parameter is set to '%s'; "
|
||||
"using 'en' instead." % language
|
||||
)
|
||||
language = "en"
|
||||
|
||||
language_probability = 1
|
||||
|
||||
tokenizer = Tokenizer(
|
||||
@@ -315,10 +377,13 @@ class WhisperModel:
|
||||
best_of=best_of,
|
||||
patience=patience,
|
||||
length_penalty=length_penalty,
|
||||
repetition_penalty=repetition_penalty,
|
||||
no_repeat_ngram_size=no_repeat_ngram_size,
|
||||
log_prob_threshold=log_prob_threshold,
|
||||
no_speech_threshold=no_speech_threshold,
|
||||
compression_ratio_threshold=compression_ratio_threshold,
|
||||
condition_on_previous_text=condition_on_previous_text,
|
||||
prompt_reset_on_temperature=prompt_reset_on_temperature,
|
||||
temperatures=(
|
||||
temperature if isinstance(temperature, (list, tuple)) else [temperature]
|
||||
),
|
||||
@@ -331,6 +396,9 @@ class WhisperModel:
|
||||
word_timestamps=word_timestamps,
|
||||
prepend_punctuations=prepend_punctuations,
|
||||
append_punctuations=append_punctuations,
|
||||
max_new_tokens=max_new_tokens,
|
||||
clip_timestamps=clip_timestamps,
|
||||
hallucination_silence_threshold=hallucination_silence_threshold,
|
||||
)
|
||||
|
||||
segments = self.generate_segments(features, tokenizer, options, encoder_output)
|
||||
@@ -342,6 +410,7 @@ class WhisperModel:
|
||||
language=language,
|
||||
language_probability=language_probability,
|
||||
duration=duration,
|
||||
duration_after_vad=duration_after_vad,
|
||||
transcription_options=options,
|
||||
vad_options=vad_parameters,
|
||||
all_language_probs=all_language_probs,
|
||||
@@ -357,8 +426,33 @@ class WhisperModel:
|
||||
encoder_output: Optional[ctranslate2.StorageView] = None,
|
||||
) -> Iterable[Segment]:
|
||||
content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
|
||||
content_duration = float(content_frames * self.feature_extractor.time_per_frame)
|
||||
|
||||
if isinstance(options.clip_timestamps, str):
|
||||
TranscriptionOptions.clip_timestamps = [
|
||||
float(ts)
|
||||
for ts in (
|
||||
options.clip_timestamps.split(",")
|
||||
if options.clip_timestamps
|
||||
else []
|
||||
)
|
||||
]
|
||||
seek_points: List[int] = [
|
||||
round(ts * self.frames_per_second) for ts in options.clip_timestamps
|
||||
]
|
||||
if len(seek_points) == 0:
|
||||
seek_points.append(0)
|
||||
if len(seek_points) % 2 == 1:
|
||||
seek_points.append(content_frames)
|
||||
seek_clips: List[Tuple[int, int]] = list(
|
||||
zip(seek_points[::2], seek_points[1::2])
|
||||
)
|
||||
|
||||
punctuation = "\"'“¿([{-\"'.。,,!!??::”)]}、"
|
||||
|
||||
idx = 0
|
||||
seek = 0
|
||||
clip_idx = 0
|
||||
seek = seek_clips[clip_idx][0]
|
||||
all_tokens = []
|
||||
prompt_reset_since = 0
|
||||
|
||||
@@ -371,12 +465,32 @@ class WhisperModel:
|
||||
all_tokens.extend(options.initial_prompt)
|
||||
|
||||
last_speech_timestamp = 0.0
|
||||
while seek < content_frames:
|
||||
# NOTE: This loop is obscurely flattened to make the diff readable.
|
||||
# A later commit should turn this into a simpler nested loop.
|
||||
# for seek_clip_start, seek_clip_end in seek_clips:
|
||||
# while seek < seek_clip_end
|
||||
while clip_idx < len(seek_clips):
|
||||
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
|
||||
if seek_clip_end > content_frames:
|
||||
seek_clip_end = content_frames
|
||||
if seek < seek_clip_start:
|
||||
seek = seek_clip_start
|
||||
if seek >= seek_clip_end:
|
||||
clip_idx += 1
|
||||
if clip_idx < len(seek_clips):
|
||||
seek = seek_clips[clip_idx][0]
|
||||
continue
|
||||
time_offset = seek * self.feature_extractor.time_per_frame
|
||||
segment = features[:, seek : seek + self.feature_extractor.nb_max_frames]
|
||||
segment_size = min(
|
||||
self.feature_extractor.nb_max_frames, content_frames - seek
|
||||
window_end_time = float(
|
||||
(seek + self.feature_extractor.nb_max_frames)
|
||||
* self.feature_extractor.time_per_frame
|
||||
)
|
||||
segment_size = min(
|
||||
self.feature_extractor.nb_max_frames,
|
||||
content_frames - seek,
|
||||
seek_clip_end - seek,
|
||||
)
|
||||
segment = features[:, seek : seek + segment_size]
|
||||
segment_duration = segment_size * self.feature_extractor.time_per_frame
|
||||
|
||||
if self.logger.isEnabledFor(logging.DEBUG):
|
||||
@@ -392,7 +506,7 @@ class WhisperModel:
|
||||
prefix=options.prefix if seek == 0 else None,
|
||||
)
|
||||
|
||||
if encoder_output is None:
|
||||
if seek > 0 or encoder_output is None:
|
||||
encoder_output = self.encode(segment)
|
||||
|
||||
(
|
||||
@@ -429,10 +543,33 @@ class WhisperModel:
|
||||
previous_seek = seek
|
||||
current_segments = []
|
||||
|
||||
# anomalous words are very long/short/improbable
|
||||
def word_anomaly_score(word: dict) -> float:
|
||||
probability = word.get("probability", 0.0)
|
||||
duration = word["end"] - word["start"]
|
||||
score = 0.0
|
||||
if probability < 0.15:
|
||||
score += 1.0
|
||||
if duration < 0.133:
|
||||
score += (0.133 - duration) * 15
|
||||
if duration > 2.0:
|
||||
score += duration - 2.0
|
||||
return score
|
||||
|
||||
def is_segment_anomaly(segment: Optional[dict]) -> bool:
|
||||
if segment is None or not segment["words"]:
|
||||
return False
|
||||
words = [w for w in segment["words"] if w["word"] not in punctuation]
|
||||
words = words[:8]
|
||||
score = sum(word_anomaly_score(w) for w in words)
|
||||
return score >= 3 or score + 0.01 >= len(words)
|
||||
|
||||
def next_words_segment(segments: List[dict]) -> Optional[dict]:
|
||||
return next((s for s in segments if s["words"]), None)
|
||||
|
||||
single_timestamp_ending = (
|
||||
len(tokens) >= 2
|
||||
and tokens[-2] < tokenizer.timestamp_begin
|
||||
and tokens[-1] >= tokenizer.timestamp_begin
|
||||
and tokens[-2] < tokenizer.timestamp_begin <= tokens[-1]
|
||||
)
|
||||
|
||||
consecutive_timestamps = [
|
||||
@@ -515,20 +652,70 @@ class WhisperModel:
|
||||
last_speech_timestamp=last_speech_timestamp,
|
||||
)
|
||||
|
||||
word_end_timestamps = [
|
||||
w["end"] for s in current_segments for w in s["words"]
|
||||
]
|
||||
if len(word_end_timestamps) > 0:
|
||||
last_speech_timestamp = word_end_timestamps[-1]
|
||||
if not single_timestamp_ending and len(word_end_timestamps) > 0:
|
||||
seek_shift = round(
|
||||
(word_end_timestamps[-1] - time_offset) * self.frames_per_second
|
||||
)
|
||||
if not single_timestamp_ending:
|
||||
last_word_end = get_end(current_segments)
|
||||
if last_word_end is not None and last_word_end > time_offset:
|
||||
seek = round(last_word_end * self.frames_per_second)
|
||||
|
||||
if seek_shift > 0:
|
||||
seek = previous_seek + seek_shift
|
||||
# skip silence before possible hallucinations
|
||||
if options.hallucination_silence_threshold is not None:
|
||||
threshold = options.hallucination_silence_threshold
|
||||
if not single_timestamp_ending:
|
||||
last_word_end = get_end(current_segments)
|
||||
if last_word_end is not None and last_word_end > time_offset:
|
||||
remaining_duration = window_end_time - last_word_end
|
||||
if remaining_duration > threshold:
|
||||
seek = round(last_word_end * self.frames_per_second)
|
||||
else:
|
||||
seek = previous_seek + segment_size
|
||||
|
||||
encoder_output = None
|
||||
# if first segment might be a hallucination, skip leading silence
|
||||
first_segment = next_words_segment(current_segments)
|
||||
if first_segment is not None and is_segment_anomaly(first_segment):
|
||||
gap = first_segment["start"] - time_offset
|
||||
if gap > threshold:
|
||||
seek = previous_seek + round(gap * self.frames_per_second)
|
||||
continue
|
||||
|
||||
# skip silence before any possible hallucination that is surrounded
|
||||
# by silence or more hallucinations
|
||||
hal_last_end = last_speech_timestamp
|
||||
for si in range(len(current_segments)):
|
||||
segment = current_segments[si]
|
||||
if not segment["words"]:
|
||||
continue
|
||||
if is_segment_anomaly(segment):
|
||||
next_segment = next_words_segment(
|
||||
current_segments[si + 1 :]
|
||||
)
|
||||
if next_segment is not None:
|
||||
hal_next_start = next_segment["words"][0]["start"]
|
||||
else:
|
||||
hal_next_start = time_offset + segment_duration
|
||||
silence_before = (
|
||||
segment["start"] - hal_last_end > threshold
|
||||
or segment["start"] < threshold
|
||||
or segment["start"] - time_offset < 2.0
|
||||
)
|
||||
silence_after = (
|
||||
hal_next_start - segment["end"] > threshold
|
||||
or is_segment_anomaly(next_segment)
|
||||
or window_end_time - segment["end"] < 2.0
|
||||
)
|
||||
if silence_before and silence_after:
|
||||
seek = round(
|
||||
max(time_offset + 1, segment["start"])
|
||||
* self.frames_per_second
|
||||
)
|
||||
if content_duration - segment["end"] < threshold:
|
||||
seek = content_frames
|
||||
current_segments[si:] = []
|
||||
break
|
||||
hal_last_end = segment["end"]
|
||||
|
||||
last_word_end = get_end(current_segments)
|
||||
if last_word_end is not None:
|
||||
last_speech_timestamp = last_word_end
|
||||
|
||||
for segment in current_segments:
|
||||
tokens = segment["tokens"]
|
||||
@@ -558,7 +745,17 @@ class WhisperModel:
|
||||
),
|
||||
)
|
||||
|
||||
if not options.condition_on_previous_text or temperature > 0.5:
|
||||
if (
|
||||
not options.condition_on_previous_text
|
||||
or temperature > options.prompt_reset_on_temperature
|
||||
):
|
||||
if options.condition_on_previous_text:
|
||||
self.logger.debug(
|
||||
"Reset prompt. prompt_reset_on_temperature threshold is met %f > %f",
|
||||
temperature,
|
||||
options.prompt_reset_on_temperature,
|
||||
)
|
||||
|
||||
prompt_reset_since = len(all_tokens)
|
||||
|
||||
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
|
||||
@@ -578,14 +775,28 @@ class WhisperModel:
|
||||
tokenizer: Tokenizer,
|
||||
options: TranscriptionOptions,
|
||||
) -> Tuple[ctranslate2.models.WhisperGenerationResult, float, float, float]:
|
||||
result = None
|
||||
avg_logprob = None
|
||||
final_temperature = None
|
||||
compression_ratio = None
|
||||
decode_result = None
|
||||
all_results = []
|
||||
below_cr_threshold_results = []
|
||||
|
||||
max_initial_timestamp_index = int(
|
||||
round(options.max_initial_timestamp / self.time_precision)
|
||||
)
|
||||
if options.max_new_tokens is not None:
|
||||
max_length = len(prompt) + options.max_new_tokens
|
||||
else:
|
||||
max_length = self.max_length
|
||||
|
||||
if max_length > self.max_length:
|
||||
raise ValueError(
|
||||
f"The length of the prompt is {len(prompt)}, and the `max_new_tokens` "
|
||||
f"{max_length - len(prompt)}. Thus, the combined length of the prompt "
|
||||
f"and `max_new_tokens` is: {max_length}. This exceeds the "
|
||||
f"`max_length` of the Whisper model: {self.max_length}. "
|
||||
"You should either reduce the length of your prompt, or "
|
||||
"reduce the value of `max_new_tokens`, "
|
||||
f"so that their combined length is less that {self.max_length}."
|
||||
)
|
||||
|
||||
for temperature in options.temperatures:
|
||||
if temperature > 0:
|
||||
@@ -601,12 +812,13 @@ class WhisperModel:
|
||||
"patience": options.patience,
|
||||
}
|
||||
|
||||
final_temperature = temperature
|
||||
result = self.model.generate(
|
||||
encoder_output,
|
||||
[prompt],
|
||||
length_penalty=options.length_penalty,
|
||||
max_length=self.max_length,
|
||||
repetition_penalty=options.repetition_penalty,
|
||||
no_repeat_ngram_size=options.no_repeat_ngram_size,
|
||||
max_length=max_length,
|
||||
return_scores=True,
|
||||
return_no_speech_prob=True,
|
||||
suppress_blank=options.suppress_blank,
|
||||
@@ -625,20 +837,28 @@ class WhisperModel:
|
||||
text = tokenizer.decode(tokens).strip()
|
||||
compression_ratio = get_compression_ratio(text)
|
||||
|
||||
decode_result = (
|
||||
result,
|
||||
avg_logprob,
|
||||
temperature,
|
||||
compression_ratio,
|
||||
)
|
||||
all_results.append(decode_result)
|
||||
|
||||
needs_fallback = False
|
||||
|
||||
if (
|
||||
options.compression_ratio_threshold is not None
|
||||
and compression_ratio > options.compression_ratio_threshold
|
||||
):
|
||||
needs_fallback = True # too repetitive
|
||||
if options.compression_ratio_threshold is not None:
|
||||
if compression_ratio > options.compression_ratio_threshold:
|
||||
needs_fallback = True # too repetitive
|
||||
|
||||
self.logger.debug(
|
||||
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
|
||||
temperature,
|
||||
compression_ratio,
|
||||
options.compression_ratio_threshold,
|
||||
)
|
||||
self.logger.debug(
|
||||
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
|
||||
temperature,
|
||||
compression_ratio,
|
||||
options.compression_ratio_threshold,
|
||||
)
|
||||
else:
|
||||
below_cr_threshold_results.append(decode_result)
|
||||
|
||||
if (
|
||||
options.log_prob_threshold is not None
|
||||
@@ -656,13 +876,27 @@ class WhisperModel:
|
||||
if (
|
||||
options.no_speech_threshold is not None
|
||||
and result.no_speech_prob > options.no_speech_threshold
|
||||
and options.log_prob_threshold is not None
|
||||
and avg_logprob < options.log_prob_threshold
|
||||
):
|
||||
needs_fallback = False # silence
|
||||
|
||||
if not needs_fallback:
|
||||
break
|
||||
else:
|
||||
# all failed, select the result with the highest average log probability
|
||||
decode_result = max(
|
||||
below_cr_threshold_results or all_results, key=lambda x: x[1]
|
||||
)
|
||||
# to pass final temperature for prompt_reset_on_temperature
|
||||
decode_result = (
|
||||
decode_result[0],
|
||||
decode_result[1],
|
||||
temperature,
|
||||
decode_result[3],
|
||||
)
|
||||
|
||||
return result, avg_logprob, final_temperature, compression_ratio
|
||||
return decode_result
|
||||
|
||||
def get_prompt(
|
||||
self,
|
||||
@@ -686,6 +920,8 @@ class WhisperModel:
|
||||
prefix_tokens = tokenizer.encode(" " + prefix.strip())
|
||||
if len(prefix_tokens) >= self.max_length // 2:
|
||||
prefix_tokens = prefix_tokens[: self.max_length // 2 - 1]
|
||||
if not without_timestamps:
|
||||
prompt.append(tokenizer.timestamp_begin)
|
||||
prompt.extend(prefix_tokens)
|
||||
|
||||
return prompt
|
||||
@@ -699,7 +935,7 @@ class WhisperModel:
|
||||
prepend_punctuations: str,
|
||||
append_punctuations: str,
|
||||
last_speech_timestamp: float,
|
||||
):
|
||||
) -> None:
|
||||
if len(segments) == 0:
|
||||
return
|
||||
|
||||
@@ -715,13 +951,12 @@ class WhisperModel:
|
||||
word_durations = np.array([word["end"] - word["start"] for word in alignment])
|
||||
word_durations = word_durations[word_durations.nonzero()]
|
||||
median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
|
||||
median_duration = min(0.7, float(median_duration))
|
||||
max_duration = median_duration * 2
|
||||
|
||||
# hack: truncate long words at sentence boundaries.
|
||||
# a better segmentation algorithm based on VAD should be able to replace this.
|
||||
if len(word_durations) > 0:
|
||||
median_duration = np.median(word_durations)
|
||||
max_duration = median_duration * 2
|
||||
sentence_end_marks = ".。!!??"
|
||||
# ensure words at sentence boundaries
|
||||
# are not longer than twice the median word duration.
|
||||
@@ -838,6 +1073,13 @@ class WhisperModel:
|
||||
words, word_tokens = tokenizer.split_to_word_tokens(
|
||||
text_tokens + [tokenizer.eot]
|
||||
)
|
||||
if len(word_tokens) <= 1:
|
||||
# return on eot only
|
||||
# >>> np.pad([], (1, 0))
|
||||
# array([0.])
|
||||
# This results in crashes when we lookup jump_times with float, like
|
||||
# IndexError: arrays used as indices must be of integer (or boolean) type
|
||||
return []
|
||||
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
|
||||
if len(word_boundaries) <= 1:
|
||||
return []
|
||||
@@ -907,7 +1149,10 @@ def get_compression_ratio(text: str) -> float:
|
||||
return len(text_bytes) / len(zlib.compress(text_bytes))
|
||||
|
||||
|
||||
def get_suppressed_tokens(tokenizer, suppress_tokens):
|
||||
def get_suppressed_tokens(
|
||||
tokenizer: Tokenizer,
|
||||
suppress_tokens: Optional[List[int]],
|
||||
) -> Optional[List[int]]:
|
||||
if not suppress_tokens or -1 in suppress_tokens:
|
||||
return suppress_tokens
|
||||
|
||||
@@ -928,7 +1173,7 @@ def get_suppressed_tokens(tokenizer, suppress_tokens):
|
||||
return sorted(set(suppress_tokens))
|
||||
|
||||
|
||||
def merge_punctuations(alignment: List[dict], prepended: str, appended: str):
|
||||
def merge_punctuations(alignment: List[dict], prepended: str, appended: str) -> None:
|
||||
# merge prepended punctuations
|
||||
i = len(alignment) - 2
|
||||
j = len(alignment) - 1
|
||||
|
||||
@@ -2,25 +2,35 @@ import logging
|
||||
import os
|
||||
import re
|
||||
|
||||
from typing import Optional
|
||||
from typing import List, Optional
|
||||
|
||||
import huggingface_hub
|
||||
import requests
|
||||
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
_MODELS = (
|
||||
"tiny.en",
|
||||
"tiny",
|
||||
"base.en",
|
||||
"base",
|
||||
"small.en",
|
||||
"small",
|
||||
"medium.en",
|
||||
"medium",
|
||||
"large-v1",
|
||||
"large-v2",
|
||||
)
|
||||
_MODELS = {
|
||||
"tiny.en": "Systran/faster-whisper-tiny.en",
|
||||
"tiny": "Systran/faster-whisper-tiny",
|
||||
"base.en": "Systran/faster-whisper-base.en",
|
||||
"base": "Systran/faster-whisper-base",
|
||||
"small.en": "Systran/faster-whisper-small.en",
|
||||
"small": "Systran/faster-whisper-small",
|
||||
"medium.en": "Systran/faster-whisper-medium.en",
|
||||
"medium": "Systran/faster-whisper-medium",
|
||||
"large-v1": "Systran/faster-whisper-large-v1",
|
||||
"large-v2": "Systran/faster-whisper-large-v2",
|
||||
"large-v3": "Systran/faster-whisper-large-v3",
|
||||
"large": "Systran/faster-whisper-large-v3",
|
||||
"distil-large-v2": "Systran/faster-distil-whisper-large-v2",
|
||||
"distil-medium.en": "Systran/faster-distil-whisper-medium.en",
|
||||
"distil-small.en": "Systran/faster-distil-whisper-small.en",
|
||||
}
|
||||
|
||||
|
||||
def available_models() -> List[str]:
|
||||
"""Returns the names of available models."""
|
||||
return list(_MODELS.keys())
|
||||
|
||||
|
||||
def get_assets_path():
|
||||
@@ -41,12 +51,11 @@ def download_model(
|
||||
):
|
||||
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
|
||||
|
||||
The model is downloaded from https://huggingface.co/guillaumekln.
|
||||
|
||||
Args:
|
||||
size_or_id: Size of the model to download (tiny, tiny.en, base, base.en, small, small.en,
|
||||
medium, medium.en, large-v1, or large-v2), or a CTranslate2-converted model ID
|
||||
from the Hugging Face Hub (e.g. guillaumekln/faster-whisper-large-v2).
|
||||
size_or_id: Size of the model to download from https://huggingface.co/guillaumekln
|
||||
(tiny, tiny.en, base, base.en, small, small.en medium, medium.en, large-v1, large-v2,
|
||||
large-v3, large), or a CTranslate2-converted model ID from the Hugging Face Hub
|
||||
(e.g. Systran/faster-whisper-large-v3).
|
||||
output_dir: Directory where the model should be saved. If not set, the model is saved in
|
||||
the cache directory.
|
||||
local_files_only: If True, avoid downloading the file and return the path to the local
|
||||
@@ -62,16 +71,16 @@ def download_model(
|
||||
if re.match(r".*/.*", size_or_id):
|
||||
repo_id = size_or_id
|
||||
else:
|
||||
if size_or_id not in _MODELS:
|
||||
repo_id = _MODELS.get(size_or_id)
|
||||
if repo_id is None:
|
||||
raise ValueError(
|
||||
"Invalid model size '%s', expected one of: %s"
|
||||
% (size_or_id, ", ".join(_MODELS))
|
||||
% (size_or_id, ", ".join(_MODELS.keys()))
|
||||
)
|
||||
|
||||
repo_id = "guillaumekln/faster-whisper-%s" % size_or_id
|
||||
|
||||
allow_patterns = [
|
||||
"config.json",
|
||||
"preprocessor_config.json",
|
||||
"model.bin",
|
||||
"tokenizer.json",
|
||||
"vocabulary.*",
|
||||
@@ -137,3 +146,10 @@ class disabled_tqdm(tqdm):
|
||||
def __init__(self, *args, **kwargs):
|
||||
kwargs["disable"] = True
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
|
||||
def get_end(segments: List[dict]) -> Optional[float]:
|
||||
return next(
|
||||
(w["end"] for s in reversed(segments) for w in reversed(s["words"])),
|
||||
segments[-1]["end"] if segments else None,
|
||||
)
|
||||
|
||||
@@ -1,3 +1,3 @@
|
||||
"""Version information."""
|
||||
|
||||
__version__ = "0.6.0"
|
||||
__version__ = "1.0.0"
|
||||
|
||||
@@ -1,5 +1,5 @@
|
||||
av==10.*
|
||||
ctranslate2>=3.10,<4
|
||||
av==11.*
|
||||
ctranslate2>=4.0,<5
|
||||
huggingface_hub>=0.13
|
||||
tokenizers==0.13.*
|
||||
tokenizers>=0.13,<0.16
|
||||
onnxruntime>=1.14,<2
|
||||
|
||||
@@ -3,6 +3,11 @@ import os
|
||||
from faster_whisper import WhisperModel, decode_audio
|
||||
|
||||
|
||||
def test_supported_languages():
|
||||
model = WhisperModel("tiny.en")
|
||||
assert model.supported_languages == ["en"]
|
||||
|
||||
|
||||
def test_transcribe(jfk_path):
|
||||
model = WhisperModel("tiny")
|
||||
segments, info = model.transcribe(jfk_path, word_timestamps=True)
|
||||
@@ -34,6 +39,24 @@ def test_transcribe(jfk_path):
|
||||
assert segment.end == segment.words[-1].end
|
||||
|
||||
|
||||
def test_prefix_with_timestamps(jfk_path):
|
||||
model = WhisperModel("tiny")
|
||||
segments, _ = model.transcribe(jfk_path, prefix="And so my fellow Americans")
|
||||
segments = list(segments)
|
||||
|
||||
assert len(segments) == 1
|
||||
|
||||
segment = segments[0]
|
||||
|
||||
assert segment.text == (
|
||||
" And so my fellow Americans ask not what your country can do for you, "
|
||||
"ask what you can do for your country."
|
||||
)
|
||||
|
||||
assert segment.start == 0
|
||||
assert 10 < segment.end < 11
|
||||
|
||||
|
||||
def test_vad(jfk_path):
|
||||
model = WhisperModel("tiny")
|
||||
segments, info = model.transcribe(
|
||||
|
||||
@@ -1,6 +1,12 @@
|
||||
import os
|
||||
|
||||
from faster_whisper import download_model
|
||||
from faster_whisper import available_models, download_model
|
||||
|
||||
|
||||
def test_available_models():
|
||||
models = available_models()
|
||||
assert isinstance(models, list)
|
||||
assert "tiny" in models
|
||||
|
||||
|
||||
def test_download_model(tmpdir):
|
||||
|
||||
Reference in New Issue
Block a user