167 lines
5.8 KiB
Python
167 lines
5.8 KiB
Python
import numpy as np
|
|
|
|
|
|
# Adapted from https://github.com/huggingface/transformers/blob/main/src/transformers/models/whisper/feature_extraction_whisper.py # noqa: E501
|
|
class FeatureExtractor:
|
|
def __init__(
|
|
self,
|
|
feature_size=80,
|
|
sampling_rate=16000,
|
|
hop_length=160,
|
|
chunk_length=30,
|
|
n_fft=400,
|
|
):
|
|
self.n_fft = n_fft
|
|
self.hop_length = hop_length
|
|
self.chunk_length = chunk_length
|
|
self.n_samples = chunk_length * sampling_rate
|
|
self.nb_max_frames = self.n_samples // hop_length
|
|
self.time_per_frame = hop_length / sampling_rate
|
|
self.sampling_rate = sampling_rate
|
|
self.mel_filters = self.get_mel_filters(
|
|
sampling_rate, n_fft, n_mels=feature_size
|
|
)
|
|
|
|
def get_mel_filters(self, sr, n_fft, n_mels=128, dtype=np.float32):
|
|
# Initialize the weights
|
|
n_mels = int(n_mels)
|
|
weights = np.zeros((n_mels, int(1 + n_fft // 2)), dtype=dtype)
|
|
|
|
# Center freqs of each FFT bin
|
|
fftfreqs = np.fft.rfftfreq(n=n_fft, d=1.0 / sr)
|
|
|
|
# 'Center freqs' of mel bands - uniformly spaced between limits
|
|
min_mel = 0.0
|
|
max_mel = 45.245640471924965
|
|
|
|
mels = np.linspace(min_mel, max_mel, n_mels + 2)
|
|
|
|
mels = np.asanyarray(mels)
|
|
|
|
# Fill in the linear scale
|
|
f_min = 0.0
|
|
f_sp = 200.0 / 3
|
|
freqs = f_min + f_sp * mels
|
|
|
|
# And now the nonlinear scale
|
|
min_log_hz = 1000.0 # beginning of log region (Hz)
|
|
min_log_mel = (min_log_hz - f_min) / f_sp # same (Mels)
|
|
logstep = np.log(6.4) / 27.0 # step size for log region
|
|
|
|
# If we have vector data, vectorize
|
|
log_t = mels >= min_log_mel
|
|
freqs[log_t] = min_log_hz * np.exp(logstep * (mels[log_t] - min_log_mel))
|
|
|
|
mel_f = freqs
|
|
|
|
fdiff = np.diff(mel_f)
|
|
ramps = np.subtract.outer(mel_f, fftfreqs)
|
|
|
|
for i in range(n_mels):
|
|
# lower and upper slopes for all bins
|
|
lower = -ramps[i] / fdiff[i]
|
|
upper = ramps[i + 2] / fdiff[i + 1]
|
|
|
|
# .. then intersect them with each other and zero
|
|
weights[i] = np.maximum(0, np.minimum(lower, upper))
|
|
|
|
# Slaney-style mel is scaled to be approx constant energy per channel
|
|
enorm = 2.0 / (mel_f[2 : n_mels + 2] - mel_f[:n_mels])
|
|
weights *= enorm[:, np.newaxis]
|
|
|
|
return weights
|
|
|
|
def fram_wave(self, waveform, center=True):
|
|
"""
|
|
Transform a raw waveform into a list of smaller waveforms.
|
|
The window length defines how much of the signal is
|
|
contain in each frame (smalle waveform), while the hope length defines the step
|
|
between the beginning of each new frame.
|
|
Centering is done by reflecting the waveform which is first centered around
|
|
`frame_idx * hop_length`.
|
|
"""
|
|
frames = []
|
|
for i in range(0, waveform.shape[0] + 1, self.hop_length):
|
|
half_window = (self.n_fft - 1) // 2 + 1
|
|
if center:
|
|
start = i - half_window if i > half_window else 0
|
|
end = (
|
|
i + half_window
|
|
if i < waveform.shape[0] - half_window
|
|
else waveform.shape[0]
|
|
)
|
|
|
|
frame = waveform[start:end]
|
|
|
|
if start == 0:
|
|
padd_width = (-i + half_window, 0)
|
|
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
|
|
|
elif end == waveform.shape[0]:
|
|
padd_width = (0, (i - waveform.shape[0] + half_window))
|
|
frame = np.pad(frame, pad_width=padd_width, mode="reflect")
|
|
|
|
else:
|
|
frame = waveform[i : i + self.n_fft]
|
|
frame_width = frame.shape[0]
|
|
if frame_width < waveform.shape[0]:
|
|
frame = np.lib.pad(
|
|
frame,
|
|
pad_width=(0, self.n_fft - frame_width),
|
|
mode="constant",
|
|
constant_values=0,
|
|
)
|
|
|
|
frames.append(frame)
|
|
return np.stack(frames, 0)
|
|
|
|
def stft(self, frames, window):
|
|
"""
|
|
Calculates the complex Short-Time Fourier Transform (STFT) of the given framed signal.
|
|
Should give the same results as `torch.stft`.
|
|
"""
|
|
frame_size = frames.shape[1]
|
|
fft_size = self.n_fft
|
|
|
|
if fft_size is None:
|
|
fft_size = frame_size
|
|
|
|
if fft_size < frame_size:
|
|
raise ValueError("FFT size must greater or equal the frame size")
|
|
# number of FFT bins to store
|
|
num_fft_bins = (fft_size >> 1) + 1
|
|
|
|
data = np.empty((len(frames), num_fft_bins), dtype=np.complex64)
|
|
fft_signal = np.zeros(fft_size)
|
|
|
|
for f, frame in enumerate(frames):
|
|
if window is not None:
|
|
np.multiply(frame, window, out=fft_signal[:frame_size])
|
|
else:
|
|
fft_signal[:frame_size] = frame
|
|
data[f] = np.fft.fft(fft_signal, axis=0)[:num_fft_bins]
|
|
return data.T
|
|
|
|
def __call__(self, waveform, padding=True):
|
|
"""
|
|
Compute the log-Mel spectrogram of the provided audio, gives similar results
|
|
whisper's original torch implementation with 1e-5 tolerance.
|
|
"""
|
|
if padding:
|
|
waveform = np.pad(waveform, [(0, self.n_samples)])
|
|
|
|
window = np.hanning(self.n_fft + 1)[:-1]
|
|
|
|
frames = self.fram_wave(waveform)
|
|
stft = self.stft(frames, window=window)
|
|
magnitudes = np.abs(stft[:, :-1]) ** 2
|
|
|
|
filters = self.mel_filters
|
|
mel_spec = filters @ magnitudes
|
|
|
|
log_spec = np.log10(np.clip(mel_spec, a_min=1e-10, a_max=None))
|
|
log_spec = np.maximum(log_spec, log_spec.max() - 8.0)
|
|
log_spec = (log_spec + 4.0) / 4.0
|
|
|
|
return log_spec
|