merge bot_db to bot_chatgpt

This commit is contained in:
2024-09-24 22:51:37 +08:00
parent 3e078fdd3c
commit 1eed30700c

View File

@@ -2,6 +2,28 @@ import os
import dotenv import dotenv
dotenv.load_dotenv() dotenv.load_dotenv()
import PyPDF2
import html2text
import re
import hashlib
from nio import (
DownloadError,
MatrixRoom,
RoomMessageAudio,
RoomMessageFile,
RoomMessageText,
)
from langchain.text_splitter import MarkdownTextSplitter
from bot import Bot, print
import asyncio
import io
import yt_dlp
import os
import subprocess
from langchain.embeddings import OpenAIEmbeddings
from selenium import webdriver
import asyncio import asyncio
import jinja2 import jinja2
import requests import requests
@@ -93,7 +115,6 @@ async def get_reply_file_content(event):
return "", 0 return "", 0
@client.ignore_link
@client.message_callback_common_wrapper @client.message_callback_common_wrapper
async def message_callback(room: MatrixRoom, event: RoomMessageText) -> None: async def message_callback(room: MatrixRoom, event: RoomMessageText) -> None:
# handle set system message # handle set system message
@@ -143,6 +164,53 @@ async def message_callback(room: MatrixRoom, event: RoomMessageText) -> None:
) )
await client.react_ok(room.room_id, event.event_id) await client.react_ok(room.room_id, event.event_id)
return return
should_react = True
if event.body.startswith("!clear") or event.body.startswith("!clean"):
# save to db
async with client.db.transaction():
await client.db.execute(
query="""
delete from embeddings e
using room_document rd
where e.document_md5 = rd.document_md5 and
rd.room = :room_id;
""",
values={"room_id": room.room_id},
)
await client.db.execute(
query="delete from room_document where room = :room_id;",
values={"room_id": room.room_id},
)
elif event.body.startswith("!embedding"):
sp = event.body.split()
if len(sp) < 2:
return
if not sp[1].lower() in ["on", "off"]:
return
status = sp[1].lower() == "on"
await client.db.execute(
query="""
insert into room_configs (room, embedding)
values (:room_id, :status)
on conflict (room) do update set embedding = excluded.embedding
;""",
values={"room_id": room.room_id, "status": status},
)
else:
should_react = False
if should_react:
await client.room_send(
room.room_id,
"m.reaction",
{
"m.relates_to": {
"event_id": event.event_id,
"key": "😘",
"rel_type": "m.annotation",
}
},
)
return return
messages: list[BaseMessage] = [] messages: list[BaseMessage] = []
@@ -290,7 +358,7 @@ async def message_callback(room: MatrixRoom, event: RoomMessageText) -> None:
sum(client.get_token_length(m.content) for m in messages) + len(messages) * 6 sum(client.get_token_length(m.content) for m in messages) + len(messages) * 6
) )
if not model_name: if not model_name:
model_name = "gpt-3.5-turbo-1106" model_name = "gpt-4o-mini"
print("messages", messages) print("messages", messages)
chat_model = ChatOpenAI( chat_model = ChatOpenAI(
@@ -345,14 +413,7 @@ async def message_callback(room: MatrixRoom, event: RoomMessageText) -> None:
client.add_event_callback(message_callback, RoomMessageText) client.add_event_callback(message_callback, RoomMessageText)
async def message_file_for_chatgpt_api_web(room: MatrixRoom, event: RoomMessageFile):
@client.ignore_self_message
@client.handel_no_gpt
@client.log_message
@client.with_typing
@client.replace_command_mark
@client.safe_try
async def message_file(room: MatrixRoom, event: RoomMessageFile):
if not event.flattened().get("content.info.mimetype") == "application/json": if not event.flattened().get("content.info.mimetype") == "application/json":
print("not application/json") print("not application/json")
return return
@@ -396,6 +457,289 @@ async def message_file(room: MatrixRoom, event: RoomMessageFile):
) )
spliter = MarkdownTextSplitter(
chunk_size=400,
chunk_overlap=100,
length_function=client.get_token_length,
)
offices_mimetypes = [
"application/wps-office.docx",
"application/wps-office.doc",
"application/wps-office.pptx",
"application/wps-office.ppt",
"application/msword",
"application/vnd.openxmlformats-officedocument.wordprocessingml.document",
"application/vnd.openxmlformats-officedocument.wordprocessingml.template",
"application/vnd.ms-powerpoint",
"application/vnd.openxmlformats-officedocument.presentationml.presentation",
"application/vnd.oasis.opendocument.text",
"application/vnd.oasis.opendocument.presentation",
]
mimetypes = [
"text/plain",
"application/pdf",
"text/markdown",
"text/html",
] + offices_mimetypes
def allowed_file(mimetype: str):
return mimetype.lower() in mimetypes
async def create_embedding(room, event, md5, content, url):
transaction = await client.db.transaction()
await client.db.execute(
query="""insert into documents (md5, content, token, url)
values (:md5, :content, :token, :url)
on conflict (md5) do nothing
;""",
values={
"md5": md5,
"content": content,
"token": client.get_token_length(content),
"url": url,
},
)
rows = await client.db.fetch_all(
query="select document_md5 from room_document where room = :room and document_md5 = :md5 limit 1;",
values={"room": room.room_id, "md5": md5},
)
if len(rows) > 0:
await transaction.rollback()
print("document alreadly insert in room", md5, room.room_id)
await client.room_send(
room.room_id,
"m.reaction",
{
"m.relates_to": {
"event_id": event.event_id,
"key": "👍",
"rel_type": "m.annotation",
}
},
)
return
await client.db.execute(
query="""
insert into room_document (room, document_md5)
values (:room_id, :md5)
on conflict (room, document_md5) do nothing
;""",
values={"room_id": room.room_id, "md5": md5},
)
# start embedding
chunks = spliter.split_text(content)
print("chunks", len(chunks))
embeddings = await embeddings_model.aembed_documents(chunks, chunk_size=1600)
print("embedding finished", len(embeddings))
if len(chunks) != len(embeddings):
raise ValueError("asdf")
insert_data: list[dict] = []
for chunk, embedding in zip(chunks, embeddings):
insert_data.append(
{
"document_md5": md5,
"md5": hashlib.md5(chunk.encode()).hexdigest(),
"content": chunk,
"token": client.get_token_length(chunk),
"embedding": str(embedding),
}
)
await client.db.execute_many(
query="""insert into embeddings (document_md5, md5, content, token, embedding)
values (:document_md5, :md5, :content, :token, :embedding)
on conflict (document_md5, md5) do nothing
;""",
values=insert_data,
)
print("insert", len(insert_data), "embedding data")
await client.db.execute(
query="""
insert into event_document (event, document_md5)
values (:event_id, :md5)
on conflict (event) do nothing
;""",
values={"event_id": event.event_id, "md5": md5},
)
await transaction.commit()
await client.room_send(
room.room_id,
"m.reaction",
{
"m.relates_to": {
"event_id": event.event_id,
"key": "😘",
"rel_type": "m.annotation",
}
},
)
def clean_html(html: str) -> str:
h2t = html2text.HTML2Text()
h2t.ignore_emphasis = True
h2t.ignore_images = True
h2t.ignore_links = True
h2t.body_width = 0
content = h2t.handle(html)
return content
def clean_content(content: str, mimetype: str, document_md5: str) -> str:
# clean 0x00
content = content.replace("\x00", "")
# clean links
content = re.sub(r"\[.*?\]\(.*?\)", "", content)
content = re.sub(r"!\[.*?\]\(.*?\)", "", content)
# clean lines
lines = [i.strip() for i in content.split("\n\n")]
while "" in lines:
lines.remove("")
content = "\n\n".join(lines)
content = "\n".join([i.strip() for i in content.split("\n")])
return content
def pdf_to_text(f) -> str:
pdf_reader = PyPDF2.PdfReader(f)
num_pages = len(pdf_reader.pages)
content = ""
for page_number in range(num_pages):
page = pdf_reader.pages[page_number]
content += page.extract_text()
return content
yt_dlp_support = ["b23.tv/", "www.bilibili.com/video/", "youtube.com/"]
def allow_yt_dlp(link: str) -> bool:
if not link.startswith("http://") and not link.startswith("https://"):
return False
allow = False
for u in yt_dlp_support:
if u in link:
allow = True
break
return allow
def allow_web(link: str) -> bool:
print("checking web url", link)
if not link.startswith("http://") and not link.startswith("https://"):
return False
return True
@client.ignore_self_message
@client.handel_no_gpt
@client.log_message
@client.with_typing
@client.replace_command_mark
@client.safe_try
async def message_file(room: MatrixRoom, event: RoomMessageFile):
# route for chatgpt-api-web
if event.flattened().get("content.info.mimetype") == "application/json":
await message_file_for_chatgpt_api_web(room, event)
return
print("received file")
mimetype = event.flattened().get("content.info.mimetype", "")
if not allowed_file(mimetype):
print("not allowed file", event.body)
raise ValueError("not allowed file")
resp = await client.download(event.url)
if isinstance(resp, DownloadError):
raise ValueError("file donwload error")
assert isinstance(resp.body, bytes)
md5 = hashlib.md5(resp.body).hexdigest()
document_fetch_result = await client.db.fetch_one(
query="select content from documents where md5 = :md5 limit 1;",
values={"md5": md5},
)
# get content
content = document_fetch_result[0] if document_fetch_result else ""
# document not exists
if content:
print("document", md5, "alreadly exists")
else:
if mimetype == "text/plain" or mimetype == "text/markdown":
content = resp.body.decode()
elif mimetype == "text/html":
content = clean_html(resp.body.decode())
elif mimetype == "application/pdf":
f = io.BytesIO(resp.body)
content = pdf_to_text(f)
elif mimetype in offices_mimetypes:
# save file to temp dir
base = event.body.rsplit(".", 1)[0]
ext = event.body.rsplit(".", 1)[1]
print("base", base)
source_filepath = os.path.join("./cache/office", event.body)
txt_filename = base + ".txt"
txt_filepath = os.path.join("./cache/office", txt_filename)
print("source_filepath", source_filepath)
with open(source_filepath, "wb") as f:
f.write(resp.body)
if ext in ["doc", "docx", "odt"]:
process = subprocess.Popen(
[
"soffice",
"--headless",
"--convert-to",
"txt:Text",
"--outdir",
"./cache/office",
source_filepath,
]
)
process.wait()
with open(txt_filepath, "r") as f:
content = f.read()
elif ext in ["ppt", "pptx", "odp"]:
pdf_filename = base + ".pdf"
pdf_filepath = os.path.join("./cache/office", pdf_filename)
process = subprocess.Popen(
[
"soffice",
"--headless",
"--convert-to",
"pdf",
"--outdir",
"./cache/office",
source_filepath,
]
)
process.wait()
with open(pdf_filepath, "rb") as f:
content = pdf_to_text(f)
else:
raise ValueError("unknown ext: ", ext)
print("converted txt", content)
else:
raise ValueError("unknown mimetype", mimetype)
content = clean_content(content, mimetype, md5)
print("content length", len(content))
await create_embedding(room, event, md5, content, event.url)
client.add_event_callback(message_file, RoomMessageFile) client.add_event_callback(message_file, RoomMessageFile)
asyncio.run(client.sync_forever()) asyncio.run(client.sync_forever())