402 lines
12 KiB
Python
402 lines
12 KiB
Python
import os
|
||
import dotenv
|
||
|
||
dotenv.load_dotenv()
|
||
import asyncio
|
||
import jinja2
|
||
import requests
|
||
import datetime
|
||
from langchain.schema import AIMessage, BaseMessage, HumanMessage, SystemMessage
|
||
from nio import MatrixRoom, RoomMessageFile, RoomMessageText
|
||
from langchain.chat_models import ChatOpenAI
|
||
import json
|
||
from langchain import LLMChain
|
||
from langchain.prompts import ChatPromptTemplate
|
||
|
||
from bot import Bot, print
|
||
|
||
from langchain.embeddings import OpenAIEmbeddings, awa
|
||
|
||
embeddings_model = OpenAIEmbeddings(
|
||
openai_api_key=os.environ["OPENAI_API_KEY"],
|
||
openai_api_base=os.environ["OPENAI_API_BASE"],
|
||
show_progress_bar=True,
|
||
)
|
||
|
||
client = Bot(
|
||
os.environ["BOT_CHATGPT_HOMESERVER"],
|
||
os.environ["BOT_CHATGPT_USER"],
|
||
os.environ["MATRIX_CHAIN_DEVICE"],
|
||
os.environ["BOT_CHATGPT_ACCESS_TOKEN"],
|
||
)
|
||
client.welcome_message = """你好👋,我是 matrix chain 中的大语言模型插件
|
||
## 使用方式:
|
||
- 直接在房间内发送消息,GPT 会在消息列中进行回复。GPT 会单独记住每个消息列中的所有内容,每个消息列单独存在互不干扰
|
||
## 配置方式:
|
||
- 发送 "!system + 系统消息" 配置大语言模型的角色,例如发送 "!system 你是一个专业英语翻译,你要把我说的话翻译成英语。你可以调整语序结构和用词让翻译更加通顺。"
|
||
"""
|
||
|
||
|
||
class SilentUndefined(jinja2.Undefined):
|
||
def _fail_with_undefined_error(self, *args, **kwargs):
|
||
print(f'jinja2.Undefined: "{self._undefined_name}" is undefined')
|
||
return ""
|
||
|
||
|
||
def render(template: str, **kargs) -> str:
|
||
env = jinja2.Environment(undefined=SilentUndefined)
|
||
temp = env.from_string(template)
|
||
|
||
def now() -> str:
|
||
return datetime.datetime.now().strftime("%Y-%m-%d")
|
||
|
||
temp.globals["now"] = now
|
||
return temp.render(**kargs)
|
||
|
||
|
||
async def get_reply_file_content(event):
|
||
"""When user reply to a event, retrive the file content (document) of event
|
||
|
||
Return with the file content and token length
|
||
"""
|
||
flattened = event.flattened()
|
||
formatted_body = flattened.get("content.formatted_body", "")
|
||
if not (
|
||
formatted_body.startswith("<mx-reply>") and "</mx-reply>" in formatted_body
|
||
):
|
||
return "", 0
|
||
|
||
print("replacing file content")
|
||
formatted_body = formatted_body[
|
||
formatted_body.index("</mx-reply>") + len("</mx-reply>") :
|
||
]
|
||
document_event_id = flattened.get("content.m.relates_to.m.in_reply_to.event_id", "")
|
||
fetch = await client.db.fetch_one(
|
||
query="""select d.content, d.token
|
||
from documents d
|
||
join event_document ed on d.md5 = ed.document_md5
|
||
where ed.event = :document_event_id""",
|
||
values={
|
||
"document_event_id": document_event_id,
|
||
},
|
||
)
|
||
|
||
if fetch and fetch[1] < 8192 + 4096:
|
||
content = fetch[0]
|
||
token = fetch[1]
|
||
print(content)
|
||
print(token)
|
||
print("-----------")
|
||
return content, token
|
||
|
||
print("document not found or too large", event.event_id)
|
||
return "", 0
|
||
|
||
|
||
@client.ignore_link
|
||
@client.message_callback_common_wrapper
|
||
async def message_callback(room: MatrixRoom, event: RoomMessageText) -> None:
|
||
# handle set system message
|
||
if event.body.startswith("!"):
|
||
if event.body.startswith("!system"):
|
||
systemMessageContent = event.body.lstrip("!system").strip()
|
||
# save to db
|
||
await client.db.execute(
|
||
query="""
|
||
insert into room_configs (room, system, examples)
|
||
values (:room_id, :systemMessageContent, '{}')
|
||
on conflict (room)
|
||
do update set system = excluded.system, examples = '{}'
|
||
""",
|
||
values={
|
||
"room_id": room.room_id,
|
||
"systemMessageContent": systemMessageContent,
|
||
},
|
||
)
|
||
await client.react_ok(room.room_id, event.event_id)
|
||
return
|
||
if event.body.startswith("!model"):
|
||
model_name = event.body.lstrip("!model").strip()
|
||
# save to db
|
||
await client.db.execute(
|
||
query="""
|
||
insert into room_configs (room, model_name)
|
||
values (:room_id, :model_name)
|
||
on conflict (room)
|
||
do update set model_name = excluded.model_name
|
||
""",
|
||
values={"room_id": room.room_id, "model_name": model_name},
|
||
)
|
||
await client.react_ok(room.room_id, event.event_id)
|
||
return
|
||
if event.body.startswith("!temp"):
|
||
temperature = float(event.body.lstrip("!temp").strip())
|
||
# save to db
|
||
await client.db.execute(
|
||
query="""
|
||
insert into room_configs (room, temperature)
|
||
values (:room_id, :temperature)
|
||
on conflict (room)
|
||
do update set temperature = excluded.temperature
|
||
""",
|
||
values={"room_id": room.room_id, "temperature": temperature},
|
||
)
|
||
await client.react_ok(room.room_id, event.event_id)
|
||
return
|
||
return
|
||
|
||
messages: list[BaseMessage] = []
|
||
# query prompt from db
|
||
db_result = await client.db.fetch_one(
|
||
query="""
|
||
select system, examples, model_name, temperature
|
||
from room_configs
|
||
where room = :room_id
|
||
limit 1
|
||
""",
|
||
values={"room_id": room.room_id},
|
||
)
|
||
model_name: str = db_result[2] if db_result else ""
|
||
temperature: float = db_result[3] if db_result else 0
|
||
|
||
systemMessageContent: str = db_result[0] if db_result else ""
|
||
systemMessageContent = systemMessageContent or ""
|
||
if systemMessageContent:
|
||
messages.append(SystemMessage(content=systemMessageContent))
|
||
|
||
examples = db_result[1] if db_result else []
|
||
for i, m in enumerate(examples):
|
||
if not m:
|
||
print("Warning: message is empty", m)
|
||
continue
|
||
if i % 2 == 0:
|
||
messages.append(HumanMessage(content=m["content"], example=True))
|
||
else:
|
||
messages.append(AIMessage(content=m["content"], example=True))
|
||
|
||
exampleTokens = 0
|
||
exampleTokens += sum(client.get_token_length(m) for m in examples if m)
|
||
|
||
# get embedding
|
||
embedding_query = await client.db.fetch_all(
|
||
query="""
|
||
select content, distance, total_token from (
|
||
select
|
||
content,
|
||
document_md5,
|
||
distance,
|
||
sum(token) over (partition by room order by distance) as total_token
|
||
from (
|
||
select
|
||
content,
|
||
rd.room,
|
||
e.document_md5,
|
||
e.embedding <#> :embedding as distance,
|
||
token
|
||
from embeddings e
|
||
join room_document rd on rd.document_md5 = e.document_md5
|
||
join room_configs rc on rc.room = rd.room
|
||
where rd.room = :room_id and rc.embedding
|
||
order by distance
|
||
limit 16
|
||
) as sub
|
||
) as sub2
|
||
where total_token < 6144
|
||
;""",
|
||
values={
|
||
"embedding": str(await embeddings_model.aembed_query(event.body)),
|
||
"room_id": room.room_id,
|
||
},
|
||
)
|
||
print("emebdding_query", embedding_query)
|
||
embedding_token = 0
|
||
embedding_text = ""
|
||
if len(embedding_query) > 0:
|
||
embedding_query.reverse()
|
||
embedding_text = "\n\n".join([i[0] for i in embedding_query])
|
||
embedding_token = client.get_token_length(embedding_text)
|
||
|
||
filecontent, filetoken = await get_reply_file_content(event)
|
||
|
||
# query memory from db
|
||
max_token = 4096 * 4
|
||
token_margin = 4096
|
||
system_token = client.get_token_length(systemMessageContent) + exampleTokens
|
||
memory_token = max_token - token_margin - system_token - embedding_token - filetoken
|
||
print(
|
||
"system_token",
|
||
system_token,
|
||
"emebdding_token",
|
||
embedding_token,
|
||
"filetoken",
|
||
filetoken,
|
||
)
|
||
rows = await client.db.fetch_all(
|
||
query="""select role, content from (
|
||
select role, content, sum(token) over (partition by root order by id desc) as total_token
|
||
from memories
|
||
where root = :root
|
||
order by id
|
||
) as sub
|
||
where total_token < :token
|
||
;""",
|
||
values={"root": event.event_id, "token": memory_token},
|
||
)
|
||
for role, content in rows:
|
||
if role == 1:
|
||
messages.append(HumanMessage(content=content))
|
||
elif role == 2:
|
||
messages.append(AIMessage(content=content))
|
||
else:
|
||
print("Unknown message role", role, content)
|
||
|
||
temp = "{{input}}"
|
||
if filecontent and embedding_text:
|
||
temp = """## Reference information:
|
||
|
||
{{embedding}}
|
||
|
||
---
|
||
|
||
## Query document:
|
||
|
||
{{filecontent}}
|
||
|
||
---
|
||
|
||
{{input}}"""
|
||
elif embedding_text:
|
||
temp = """## Reference information:
|
||
|
||
{{embedding}}
|
||
|
||
---
|
||
|
||
{{input}}"""
|
||
elif filecontent:
|
||
temp = """ ## Query document:
|
||
|
||
{{filecontent}}
|
||
|
||
---
|
||
|
||
{{input}}"""
|
||
temp = render(
|
||
temp, input=event.body, embedding=embedding_text, filecontent=filecontent
|
||
)
|
||
messages.append(HumanMessage(content=temp))
|
||
|
||
total_token = (
|
||
sum(client.get_token_length(m.content) for m in messages) + len(messages) * 6
|
||
)
|
||
if not model_name:
|
||
model_name = "gpt-3.5-turbo-1106"
|
||
|
||
print("messages", messages)
|
||
chat_model = ChatOpenAI(
|
||
openai_api_base=os.environ["OPENAI_API_BASE"],
|
||
openai_api_key=os.environ["OPENAI_API_KEY"],
|
||
model=model_name,
|
||
temperature=temperature,
|
||
)
|
||
chain = LLMChain(llm=chat_model, prompt=ChatPromptTemplate.from_messages(messages))
|
||
|
||
result = await chain.arun(
|
||
{
|
||
"input": event.body,
|
||
"embedding": embedding_text,
|
||
"filecontent": filecontent,
|
||
}
|
||
)
|
||
print(result)
|
||
|
||
await client.room_send(
|
||
room.room_id,
|
||
"m.room.message",
|
||
{
|
||
"body": result,
|
||
"msgtype": "m.text",
|
||
"m.relates_to": {
|
||
"rel_type": "m.thread",
|
||
"event_id": event.event_id,
|
||
},
|
||
},
|
||
)
|
||
|
||
# record query and result
|
||
await client.db.execute_many(
|
||
query="insert into memories(root, role, content, token) values (:root, :role, :content, :token)",
|
||
values=[
|
||
{
|
||
"root": event.event_id,
|
||
"role": 1,
|
||
"content": event.body,
|
||
"token": client.get_token_length(event.body),
|
||
},
|
||
{
|
||
"root": event.event_id,
|
||
"role": 2,
|
||
"content": result,
|
||
"token": client.get_token_length(result),
|
||
},
|
||
],
|
||
)
|
||
|
||
|
||
client.add_event_callback(message_callback, RoomMessageText)
|
||
|
||
|
||
@client.ignore_self_message
|
||
@client.handel_no_gpt
|
||
@client.log_message
|
||
@client.with_typing
|
||
@client.replace_command_mark
|
||
@client.safe_try
|
||
async def message_file(room: MatrixRoom, event: RoomMessageFile):
|
||
if not event.flattened().get("content.info.mimetype") == "application/json":
|
||
print("not application/json")
|
||
return
|
||
size = event.flattened().get("content.info.size", 1024 * 1024 + 1)
|
||
if size > 1024 * 1024:
|
||
print("json file too large")
|
||
return
|
||
print("event url", event.url)
|
||
j = requests.get(
|
||
f'https://yongyuancv.cn/_matrix/media/r0/download/yongyuancv.cn/{event.url.rsplit("/", 1)[-1]}'
|
||
).json()
|
||
if j.get("chatgpt_api_web_version") is None:
|
||
print("not chatgpt-api-web chatstore export file")
|
||
return
|
||
if j["chatgpt_api_web_version"] < "v1.5.0":
|
||
raise ValueError(j["chatgpt_api_web_version"])
|
||
examples = [m["content"] for m in j["history"] if m["example"]]
|
||
await client.db.execute(
|
||
query="""
|
||
insert into room_configs (room, system, examples)
|
||
values (:room_id, :system, :examples)
|
||
on conflict (room) do update set system = excluded.system, examples = excluded.examples
|
||
""",
|
||
values={
|
||
"room_id": room.room_id,
|
||
"system": j["systemMessageContent"],
|
||
"examples": str(examples),
|
||
},
|
||
)
|
||
|
||
await client.room_send(
|
||
room.room_id,
|
||
"m.reaction",
|
||
{
|
||
"m.relates_to": {
|
||
"event_id": event.event_id,
|
||
"key": "😘",
|
||
"rel_type": "m.annotation",
|
||
}
|
||
},
|
||
)
|
||
|
||
|
||
client.add_event_callback(message_file, RoomMessageFile)
|
||
|
||
asyncio.run(client.sync_forever())
|