Add files via upload

This commit is contained in:
Anjok07
2022-07-06 02:57:56 -05:00
committed by GitHub
parent d2d02be33e
commit 4a0b899b15
5 changed files with 602 additions and 208 deletions

View File

@@ -6,6 +6,7 @@ from pathlib import Path
import pydub
import hashlib
from random import randrange
import re
import subprocess
import soundfile as sf
@@ -172,7 +173,7 @@ class Predictor():
widget_text.write(base_text + 'Preparing to save Instrumental...')
else:
widget_text.write(base_text + 'Saving vocals... ')
sf.write(non_reduced_vocal_path, sources[c].T, samplerate)
sf.write(non_reduced_vocal_path, sources[c].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
@@ -193,17 +194,17 @@ class Predictor():
widget_text.write(base_text + 'Saving Vocals... ')
if demucs_only == 'on':
if 'UVR' in model_set_name:
sf.write(vocal_path, sources[1].T, samplerate)
sf.write(vocal_path, sources[1].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
if 'extra' in model_set_name:
sf.write(vocal_path, sources[3].T, samplerate)
sf.write(vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.95))
widget_text.write('Done!\n')
else:
sf.write(non_reduced_vocal_path, sources[3].T, samplerate)
sf.write(non_reduced_vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
@@ -221,7 +222,7 @@ class Predictor():
c += 1
if demucs_switch == 'off':
widget_text.write(base_text + 'Saving Vocals..')
sf.write(vocal_path, sources[c].T, samplerate)
sf.write(vocal_path, sources[c].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
@@ -229,11 +230,11 @@ class Predictor():
widget_text.write(base_text + 'Saving Vocals... ')
if demucs_only == 'on':
if 'UVR' in model_set_name:
sf.write(vocal_path, sources[1].T, samplerate)
sf.write(vocal_path, sources[1].T, samplerate, subtype=wav_type_set)
if 'extra' in model_set_name:
sf.write(vocal_path, sources[3].T, samplerate)
sf.write(vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
else:
sf.write(vocal_path, sources[3].T, samplerate)
sf.write(vocal_path, sources[3].T, samplerate, subtype=wav_type_set)
update_progress(**progress_kwargs,
step=(0.9))
widget_text.write('Done!\n')
@@ -284,7 +285,7 @@ class Predictor():
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
update_progress(**progress_kwargs,
step=(0.95))
sf.write(Instrumental_path, spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'])
sf.write(Instrumental_path, normalization_set(spec_utils.cmb_spectrogram_to_wave(-v_spec, mp)), mp.param['sr'], subtype=wav_type_set)
if data['inst_only']:
if file_exists == 'there':
pass
@@ -413,7 +414,10 @@ class Predictor():
algorithm=data['mixing'],
value=b[3])*float(compensate)) # compensation
return sources
if demucs_switch == 'off':
return sources*float(compensate)
else:
return sources
def demix_base(self, mixes, margin_size):
chunked_sources = []
@@ -642,11 +646,15 @@ data = {
'shifts': 0,
'margin': 44100,
'split_mode': False,
'normalize': False,
'compensate': 1.03597672895,
'autocompensate': True,
'demucs_only': False,
'mixing': 'Default',
'DemucsModel_MDX': 'UVR_Demucs_Model_1',
'wavtype': 'PCM_16',
'mp3bit': '320k',
'settest': False,
# Models
'instrumentalModel': None,
@@ -694,21 +702,22 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
global ModelName_2
global compensate
global autocompensate
global demucs_model_set
global channel_set
global margin_set
global overlap_set
global shift_set
global noise_pro_set
global n_fft_scale_set
global dim_f_set
global split_mode
global demucs_switch
global demucs_only
global wav_type_set
global flac_type_set
global mp3_bit_set
wav_type_set = data['wavtype']
# Update default settings
default_chunks = data['chunks']
@@ -768,7 +777,7 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
# to reversement
sf.write(f'temp.wav',
wav_instrument, mp.param['sr'])
normalization_set(wav_instrument), mp.param['sr'], subtype=wav_type_set)
# -Save files-
# Instrumental
@@ -780,14 +789,14 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
if VModel in ModelName_1 and data['voc_only']:
sf.write(instrumental_path,
wav_instrument, mp.param['sr'])
normalization_set(wav_instrument), mp.param['sr'], subtype=wav_type_set)
elif VModel in ModelName_1 and data['inst_only']:
pass
elif data['voc_only']:
pass
else:
sf.write(instrumental_path,
wav_instrument, mp.param['sr'])
normalization_set(wav_instrument), mp.param['sr'], subtype=wav_type_set)
# Vocal
if vocal_name is not None:
@@ -798,23 +807,42 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
if VModel in ModelName_1 and data['inst_only']:
sf.write(vocal_path,
wav_vocals, mp.param['sr'])
normalization_set(wav_vocals), mp.param['sr'], subtype=wav_type_set)
elif VModel in ModelName_1 and data['voc_only']:
pass
elif data['inst_only']:
pass
else:
sf.write(vocal_path,
wav_vocals, mp.param['sr'])
normalization_set(wav_vocals), mp.param['sr'], subtype=wav_type_set)
data.update(kwargs)
# Update default settings
global default_window_size
global default_agg
global normalization_set
default_window_size = data['window_size']
default_agg = data['agg']
if data['wavtype'] == '32-bit Float':
wav_type_set = 'FLOAT'
elif data['wavtype'] == '64-bit Float':
wav_type_set = 'DOUBLE'
else:
wav_type_set = data['wavtype']
flac_type_set = data['flactype']
mp3_bit_set = data['mp3bit']
if data['normalize'] == True:
normalization_set = spec_utils.normalize
print('normalization on')
else:
normalization_set = spec_utils.nonormalize
print('normalization off')
stime = time.perf_counter()
progress_var.set(0)
text_widget.clear()
@@ -853,6 +881,21 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
else:
demucs_only = 'off'
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Flac':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if data['wavtype'] == '64-bit Float':
if data['saveFormat'] == 'Mp3':
text_widget.write('Please select \"WAV\" as your save format to use 64-bit Float.\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}')
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
if not data['ensChoose'] == 'Manual Ensemble':
@@ -1706,10 +1749,17 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
os.mkdir(folder_path)
# Determine File Name
base_name = f'{data["export_path"]}{enseFolderName}/{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
enseExport = f'{data["export_path"]}{enseFolderName}/'
trackname = f'{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}'
def get_numbers_from_filename(filename):
return re.search(r'\d+', filename).group(0)
foldernum = get_numbers_from_filename(enseFolderName)
if c['model_location'] == 'pass':
pass
@@ -2249,79 +2299,156 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
return [f"{folder}{i}" for i in os.listdir(folder) if i.startswith(prefix) if i.endswith(suffix)]
if data['appendensem'] == False:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_(Instrumental)'.format(trackname),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_(Vocals)'.format(trackname),
'type': 'Vocals'
}
]
if data['settest']:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_(Instrumental)'.format(foldernum, trackname),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_(Vocals)'.format(foldernum, trackname),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_(Instrumental)'.format(trackname),
'type': 'Instrumentals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_(Instrumental)'.format(foldernum, trackname),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_(Vocals)'.format(trackname),
'type': 'Vocals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_(Vocals)'.format(foldernum, trackname),
'type': 'Vocals'
}
]
else:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_(Instrumental)'.format(trackname),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_(Vocals)'.format(trackname),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_(Instrumental)'.format(trackname),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_(Vocals)'.format(trackname),
'type': 'Vocals'
}
]
else:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
'type': 'Vocals'
}
]
if data['settest']:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_Ensembled_{}_(Instrumental)'.format(foldernum, trackname, ensemode),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_Ensembled_{}_(Vocals)'.format(foldernum, trackname, ensemode),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
'type': 'Instrumentals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_{}_Ensembled_{}_(Instrumental)'.format(foldernum, trackname, ensemode),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
'type': 'Vocals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_{}_Ensembled_{}_(Vocals)'.format(foldernum, trackname, ensemode),
'type': 'Vocals'
}
]
else:
voc_inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
'type': 'Instrumentals'
},
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
'type': 'Vocals'
}
]
inst = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Instrumental).wav"),
'output':'{}_Ensembled_{}_(Instrumental)'.format(trackname, ensemode),
'type': 'Instrumentals'
}
]
vocal = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'files':get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav"),
'output': '{}_Ensembled_{}_(Vocals)'.format(trackname, ensemode),
'type': 'Vocals'
}
]
if data['voc_only']:
ensembles = vocal
@@ -2362,13 +2489,13 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
del wave
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
specs), mp), mp.param['sr'])
normalization_set(spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
specs), mp)), mp.param['sr'], subtype=wav_type_set)
if data['saveFormat'] == 'Mp3':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate="320k")
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate=mp3_bit_set)
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
@@ -2456,7 +2583,7 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
if trackname in file:
musfile = pydub.AudioSegment.from_wav(file)
#rename them using the old name + ".wav"
musfile.export("{0}.mp3".format(name), format="mp3", bitrate="320k")
musfile.export("{0}.mp3".format(name), format="mp3", bitrate=mp3_bit_set)
try:
files = get_files(folder=enseExport, prefix=trackname, suffix="_(Vocals).wav")
for file in files:
@@ -2607,39 +2734,112 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
savefilename = (data['input_paths'][0])
trackname1 = f'{os.path.splitext(os.path.basename(savefilename))[0]}'
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_Manual_Ensemble_(Min Spec)'.format(trackname1),
'type': 'Instrumentals'
}
]
timestampnum = round(datetime.utcnow().timestamp())
randomnum = randrange(100000, 1000000)
if data['settest']:
try:
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_{}_Manual_Ensemble_(Min Spec)'.format(timestampnum, trackname1),
'type': 'Instrumentals'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_Manual_Ensemble_(Max Spec)'.format(trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_diff_si'.format(trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_diff_ni'.format(trackname1),
'type': 'Normal Inversion'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_Manual_Ensemble_(Max Spec)'.format(timestampnum, trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_si'.format(timestampnum, trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_ni'.format(timestampnum, trackname1),
'type': 'Normal Inversion'
}
]
except:
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_{}_Manual_Ensemble_(Min Spec)'.format(randomnum, trackname1),
'type': 'Instrumentals'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_Manual_Ensemble_(Max Spec)'.format(randomnum, trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_si'.format(randomnum, trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_{}_diff_ni'.format(randomnum, trackname1),
'type': 'Normal Inversion'
}
]
else:
insts = [
{
'algorithm':'min_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output':'{}_Manual_Ensemble_(Min Spec)'.format(trackname1),
'type': 'Instrumentals'
}
]
vocals = [
{
'algorithm':'max_mag',
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_Manual_Ensemble_(Max Spec)'.format(trackname1),
'type': 'Vocals'
}
]
invert_spec = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_diff_si'.format(trackname1),
'type': 'Spectral Inversion'
}
]
invert_nor = [
{
'model_params':'lib_v5/modelparams/1band_sr44100_hl512.json',
'output': '{}_diff_ni'.format(trackname1),
'type': 'Normal Inversion'
}
]
if data['algo'] == 'Instrumentals (Min Spec)':
ensem = insts
@@ -2681,13 +2881,13 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
del wave
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
specs), mp), mp.param['sr'])
normalization_set(spec_utils.cmb_spectrogram_to_wave(spec_utils.ensembling(e['algorithm'],
specs), mp)), mp.param['sr'], subtype=wav_type_set)
if data['saveFormat'] == 'Mp3':
try:
musfile = pydub.AudioSegment.from_wav(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])))
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate="320k")
musfile.export((os.path.join('{}'.format(data['export_path']),'{}.mp3'.format(e['output']))), format="mp3", bitrate=mp3_bit_set)
os.remove((os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output']))))
except Exception as e:
text_widget.write('\n' + base_text + 'Failed to save output(s) as Mp3.')
@@ -2782,11 +2982,11 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'])
spec_utils.cmb_spectrogram_to_wave(-v_spec, mp), mp.param['sr'], subtype=wav_type_set)
if data['algo'] == 'Invert (Normal)':
v_spec = specs[0] - specs[1]
sf.write(os.path.join('{}'.format(data['export_path']),'{}.wav'.format(e['output'])),
spec_utils.cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'])
spec_utils.cmb_spectrogram_to_wave(v_spec, mp), mp.param['sr'], subtype=wav_type_set)
text_widget.write("Done!\n")