Add files via upload
This commit is contained in:
5
demucs/__init__.py
Normal file
5
demucs/__init__.py
Normal file
@@ -0,0 +1,5 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
272
demucs/__main__.py
Normal file
272
demucs/__main__.py
Normal file
@@ -0,0 +1,272 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import time
|
||||
from dataclasses import dataclass, field
|
||||
from fractions import Fraction
|
||||
|
||||
import torch as th
|
||||
from torch import distributed, nn
|
||||
from torch.nn.parallel.distributed import DistributedDataParallel
|
||||
|
||||
from .augment import FlipChannels, FlipSign, Remix, Shift
|
||||
from .compressed import StemsSet, build_musdb_metadata, get_musdb_tracks
|
||||
from .model import Demucs
|
||||
from .parser import get_name, get_parser
|
||||
from .raw import Rawset
|
||||
from .tasnet import ConvTasNet
|
||||
from .test import evaluate
|
||||
from .train import train_model, validate_model
|
||||
from .utils import human_seconds, load_model, save_model, sizeof_fmt
|
||||
|
||||
|
||||
@dataclass
|
||||
class SavedState:
|
||||
metrics: list = field(default_factory=list)
|
||||
last_state: dict = None
|
||||
best_state: dict = None
|
||||
optimizer: dict = None
|
||||
|
||||
|
||||
def main():
|
||||
parser = get_parser()
|
||||
args = parser.parse_args()
|
||||
name = get_name(parser, args)
|
||||
print(f"Experiment {name}")
|
||||
|
||||
if args.musdb is None and args.rank == 0:
|
||||
print(
|
||||
"You must provide the path to the MusDB dataset with the --musdb flag. "
|
||||
"To download the MusDB dataset, see https://sigsep.github.io/datasets/musdb.html.",
|
||||
file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
eval_folder = args.evals / name
|
||||
eval_folder.mkdir(exist_ok=True, parents=True)
|
||||
args.logs.mkdir(exist_ok=True)
|
||||
metrics_path = args.logs / f"{name}.json"
|
||||
eval_folder.mkdir(exist_ok=True, parents=True)
|
||||
args.checkpoints.mkdir(exist_ok=True, parents=True)
|
||||
args.models.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
if args.device is None:
|
||||
device = "cpu"
|
||||
if th.cuda.is_available():
|
||||
device = "cuda"
|
||||
else:
|
||||
device = args.device
|
||||
|
||||
th.manual_seed(args.seed)
|
||||
# Prevents too many threads to be started when running `museval` as it can be quite
|
||||
# inefficient on NUMA architectures.
|
||||
os.environ["OMP_NUM_THREADS"] = "1"
|
||||
|
||||
if args.world_size > 1:
|
||||
if device != "cuda" and args.rank == 0:
|
||||
print("Error: distributed training is only available with cuda device", file=sys.stderr)
|
||||
sys.exit(1)
|
||||
th.cuda.set_device(args.rank % th.cuda.device_count())
|
||||
distributed.init_process_group(backend="nccl",
|
||||
init_method="tcp://" + args.master,
|
||||
rank=args.rank,
|
||||
world_size=args.world_size)
|
||||
|
||||
checkpoint = args.checkpoints / f"{name}.th"
|
||||
checkpoint_tmp = args.checkpoints / f"{name}.th.tmp"
|
||||
if args.restart and checkpoint.exists():
|
||||
checkpoint.unlink()
|
||||
|
||||
if args.test:
|
||||
args.epochs = 1
|
||||
args.repeat = 0
|
||||
model = load_model(args.models / args.test)
|
||||
elif args.tasnet:
|
||||
model = ConvTasNet(audio_channels=args.audio_channels, samplerate=args.samplerate, X=args.X)
|
||||
else:
|
||||
model = Demucs(
|
||||
audio_channels=args.audio_channels,
|
||||
channels=args.channels,
|
||||
context=args.context,
|
||||
depth=args.depth,
|
||||
glu=args.glu,
|
||||
growth=args.growth,
|
||||
kernel_size=args.kernel_size,
|
||||
lstm_layers=args.lstm_layers,
|
||||
rescale=args.rescale,
|
||||
rewrite=args.rewrite,
|
||||
sources=4,
|
||||
stride=args.conv_stride,
|
||||
upsample=args.upsample,
|
||||
samplerate=args.samplerate
|
||||
)
|
||||
model.to(device)
|
||||
if args.show:
|
||||
print(model)
|
||||
size = sizeof_fmt(4 * sum(p.numel() for p in model.parameters()))
|
||||
print(f"Model size {size}")
|
||||
return
|
||||
|
||||
optimizer = th.optim.Adam(model.parameters(), lr=args.lr)
|
||||
|
||||
try:
|
||||
saved = th.load(checkpoint, map_location='cpu')
|
||||
except IOError:
|
||||
saved = SavedState()
|
||||
else:
|
||||
model.load_state_dict(saved.last_state)
|
||||
optimizer.load_state_dict(saved.optimizer)
|
||||
|
||||
if args.save_model:
|
||||
if args.rank == 0:
|
||||
model.to("cpu")
|
||||
model.load_state_dict(saved.best_state)
|
||||
save_model(model, args.models / f"{name}.th")
|
||||
return
|
||||
|
||||
if args.rank == 0:
|
||||
done = args.logs / f"{name}.done"
|
||||
if done.exists():
|
||||
done.unlink()
|
||||
|
||||
if args.augment:
|
||||
augment = nn.Sequential(FlipSign(), FlipChannels(), Shift(args.data_stride),
|
||||
Remix(group_size=args.remix_group_size)).to(device)
|
||||
else:
|
||||
augment = Shift(args.data_stride)
|
||||
|
||||
if args.mse:
|
||||
criterion = nn.MSELoss()
|
||||
else:
|
||||
criterion = nn.L1Loss()
|
||||
|
||||
# Setting number of samples so that all convolution windows are full.
|
||||
# Prevents hard to debug mistake with the prediction being shifted compared
|
||||
# to the input mixture.
|
||||
samples = model.valid_length(args.samples)
|
||||
print(f"Number of training samples adjusted to {samples}")
|
||||
|
||||
if args.raw:
|
||||
train_set = Rawset(args.raw / "train",
|
||||
samples=samples + args.data_stride,
|
||||
channels=args.audio_channels,
|
||||
streams=[0, 1, 2, 3, 4],
|
||||
stride=args.data_stride)
|
||||
|
||||
valid_set = Rawset(args.raw / "valid", channels=args.audio_channels)
|
||||
else:
|
||||
if not args.metadata.is_file() and args.rank == 0:
|
||||
build_musdb_metadata(args.metadata, args.musdb, args.workers)
|
||||
if args.world_size > 1:
|
||||
distributed.barrier()
|
||||
metadata = json.load(open(args.metadata))
|
||||
duration = Fraction(samples + args.data_stride, args.samplerate)
|
||||
stride = Fraction(args.data_stride, args.samplerate)
|
||||
train_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="train"),
|
||||
metadata,
|
||||
duration=duration,
|
||||
stride=stride,
|
||||
samplerate=args.samplerate,
|
||||
channels=args.audio_channels)
|
||||
valid_set = StemsSet(get_musdb_tracks(args.musdb, subsets=["train"], split="valid"),
|
||||
metadata,
|
||||
samplerate=args.samplerate,
|
||||
channels=args.audio_channels)
|
||||
|
||||
best_loss = float("inf")
|
||||
for epoch, metrics in enumerate(saved.metrics):
|
||||
print(f"Epoch {epoch:03d}: "
|
||||
f"train={metrics['train']:.8f} "
|
||||
f"valid={metrics['valid']:.8f} "
|
||||
f"best={metrics['best']:.4f} "
|
||||
f"duration={human_seconds(metrics['duration'])}")
|
||||
best_loss = metrics['best']
|
||||
|
||||
if args.world_size > 1:
|
||||
dmodel = DistributedDataParallel(model,
|
||||
device_ids=[th.cuda.current_device()],
|
||||
output_device=th.cuda.current_device())
|
||||
else:
|
||||
dmodel = model
|
||||
|
||||
for epoch in range(len(saved.metrics), args.epochs):
|
||||
begin = time.time()
|
||||
model.train()
|
||||
train_loss = train_model(epoch,
|
||||
train_set,
|
||||
dmodel,
|
||||
criterion,
|
||||
optimizer,
|
||||
augment,
|
||||
batch_size=args.batch_size,
|
||||
device=device,
|
||||
repeat=args.repeat,
|
||||
seed=args.seed,
|
||||
workers=args.workers,
|
||||
world_size=args.world_size)
|
||||
model.eval()
|
||||
valid_loss = validate_model(epoch,
|
||||
valid_set,
|
||||
model,
|
||||
criterion,
|
||||
device=device,
|
||||
rank=args.rank,
|
||||
split=args.split_valid,
|
||||
world_size=args.world_size)
|
||||
|
||||
duration = time.time() - begin
|
||||
if valid_loss < best_loss:
|
||||
best_loss = valid_loss
|
||||
saved.best_state = {
|
||||
key: value.to("cpu").clone()
|
||||
for key, value in model.state_dict().items()
|
||||
}
|
||||
saved.metrics.append({
|
||||
"train": train_loss,
|
||||
"valid": valid_loss,
|
||||
"best": best_loss,
|
||||
"duration": duration
|
||||
})
|
||||
if args.rank == 0:
|
||||
json.dump(saved.metrics, open(metrics_path, "w"))
|
||||
|
||||
saved.last_state = model.state_dict()
|
||||
saved.optimizer = optimizer.state_dict()
|
||||
if args.rank == 0 and not args.test:
|
||||
th.save(saved, checkpoint_tmp)
|
||||
checkpoint_tmp.rename(checkpoint)
|
||||
|
||||
print(f"Epoch {epoch:03d}: "
|
||||
f"train={train_loss:.8f} valid={valid_loss:.8f} best={best_loss:.4f} "
|
||||
f"duration={human_seconds(duration)}")
|
||||
|
||||
del dmodel
|
||||
model.load_state_dict(saved.best_state)
|
||||
if args.eval_cpu:
|
||||
device = "cpu"
|
||||
model.to(device)
|
||||
model.eval()
|
||||
evaluate(model,
|
||||
args.musdb,
|
||||
eval_folder,
|
||||
rank=args.rank,
|
||||
world_size=args.world_size,
|
||||
device=device,
|
||||
save=args.save,
|
||||
split=args.split_valid,
|
||||
shifts=args.shifts,
|
||||
workers=args.eval_workers)
|
||||
model.to("cpu")
|
||||
save_model(model, args.models / f"{name}.th")
|
||||
if args.rank == 0:
|
||||
print("done")
|
||||
done.write_text("done")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
294
demucs/apply.py
Normal file
294
demucs/apply.py
Normal file
@@ -0,0 +1,294 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
Code to apply a model to a mix. It will handle chunking with overlaps and
|
||||
inteprolation between chunks, as well as the "shift trick".
|
||||
"""
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
import random
|
||||
import typing as tp
|
||||
from multiprocessing import Process,Queue,Pipe
|
||||
|
||||
import torch as th
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
import tqdm
|
||||
import tkinter as tk
|
||||
|
||||
from .demucs import Demucs
|
||||
from .hdemucs import HDemucs
|
||||
from .utils import center_trim, DummyPoolExecutor
|
||||
|
||||
Model = tp.Union[Demucs, HDemucs]
|
||||
|
||||
progress_bar_num = 0
|
||||
|
||||
class BagOfModels(nn.Module):
|
||||
def __init__(self, models: tp.List[Model],
|
||||
weights: tp.Optional[tp.List[tp.List[float]]] = None,
|
||||
segment: tp.Optional[float] = None):
|
||||
"""
|
||||
Represents a bag of models with specific weights.
|
||||
You should call `apply_model` rather than calling directly the forward here for
|
||||
optimal performance.
|
||||
|
||||
Args:
|
||||
models (list[nn.Module]): list of Demucs/HDemucs models.
|
||||
weights (list[list[float]]): list of weights. If None, assumed to
|
||||
be all ones, otherwise it should be a list of N list (N number of models),
|
||||
each containing S floats (S number of sources).
|
||||
segment (None or float): overrides the `segment` attribute of each model
|
||||
(this is performed inplace, be careful if you reuse the models passed).
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
assert len(models) > 0
|
||||
first = models[0]
|
||||
for other in models:
|
||||
assert other.sources == first.sources
|
||||
assert other.samplerate == first.samplerate
|
||||
assert other.audio_channels == first.audio_channels
|
||||
if segment is not None:
|
||||
other.segment = segment
|
||||
|
||||
self.audio_channels = first.audio_channels
|
||||
self.samplerate = first.samplerate
|
||||
self.sources = first.sources
|
||||
self.models = nn.ModuleList(models)
|
||||
|
||||
if weights is None:
|
||||
weights = [[1. for _ in first.sources] for _ in models]
|
||||
else:
|
||||
assert len(weights) == len(models)
|
||||
for weight in weights:
|
||||
assert len(weight) == len(first.sources)
|
||||
self.weights = weights
|
||||
|
||||
def forward(self, x):
|
||||
raise NotImplementedError("Call `apply_model` on this.")
|
||||
|
||||
class TensorChunk:
|
||||
def __init__(self, tensor, offset=0, length=None):
|
||||
total_length = tensor.shape[-1]
|
||||
assert offset >= 0
|
||||
assert offset < total_length
|
||||
|
||||
if length is None:
|
||||
length = total_length - offset
|
||||
else:
|
||||
length = min(total_length - offset, length)
|
||||
|
||||
if isinstance(tensor, TensorChunk):
|
||||
self.tensor = tensor.tensor
|
||||
self.offset = offset + tensor.offset
|
||||
else:
|
||||
self.tensor = tensor
|
||||
self.offset = offset
|
||||
self.length = length
|
||||
self.device = tensor.device
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
shape = list(self.tensor.shape)
|
||||
shape[-1] = self.length
|
||||
return shape
|
||||
|
||||
def padded(self, target_length):
|
||||
delta = target_length - self.length
|
||||
total_length = self.tensor.shape[-1]
|
||||
assert delta >= 0
|
||||
|
||||
start = self.offset - delta // 2
|
||||
end = start + target_length
|
||||
|
||||
correct_start = max(0, start)
|
||||
correct_end = min(total_length, end)
|
||||
|
||||
pad_left = correct_start - start
|
||||
pad_right = end - correct_end
|
||||
|
||||
out = F.pad(self.tensor[..., correct_start:correct_end], (pad_left, pad_right))
|
||||
assert out.shape[-1] == target_length
|
||||
return out
|
||||
|
||||
def tensor_chunk(tensor_or_chunk):
|
||||
if isinstance(tensor_or_chunk, TensorChunk):
|
||||
return tensor_or_chunk
|
||||
else:
|
||||
assert isinstance(tensor_or_chunk, th.Tensor)
|
||||
return TensorChunk(tensor_or_chunk)
|
||||
|
||||
def apply_model(model, mix, shifts=1, split=True, overlap=0.25, transition_power=1., static_shifts=1, set_progress_bar=None, device=None, progress=False, num_workers=0, pool=None):
|
||||
"""
|
||||
Apply model to a given mixture.
|
||||
|
||||
Args:
|
||||
shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec
|
||||
and apply the oppositve shift to the output. This is repeated `shifts` time and
|
||||
all predictions are averaged. This effectively makes the model time equivariant
|
||||
and improves SDR by up to 0.2 points.
|
||||
split (bool): if True, the input will be broken down in 8 seconds extracts
|
||||
and predictions will be performed individually on each and concatenated.
|
||||
Useful for model with large memory footprint like Tasnet.
|
||||
progress (bool): if True, show a progress bar (requires split=True)
|
||||
device (torch.device, str, or None): if provided, device on which to
|
||||
execute the computation, otherwise `mix.device` is assumed.
|
||||
When `device` is different from `mix.device`, only local computations will
|
||||
be on `device`, while the entire tracks will be stored on `mix.device`.
|
||||
"""
|
||||
|
||||
global fut_length
|
||||
global bag_num
|
||||
global prog_bar
|
||||
|
||||
if device is None:
|
||||
device = mix.device
|
||||
else:
|
||||
device = th.device(device)
|
||||
if pool is None:
|
||||
if num_workers > 0 and device.type == 'cpu':
|
||||
pool = ThreadPoolExecutor(num_workers)
|
||||
else:
|
||||
pool = DummyPoolExecutor()
|
||||
|
||||
kwargs = {
|
||||
'shifts': shifts,
|
||||
'split': split,
|
||||
'overlap': overlap,
|
||||
'transition_power': transition_power,
|
||||
'progress': progress,
|
||||
'device': device,
|
||||
'pool': pool,
|
||||
'set_progress_bar': set_progress_bar,
|
||||
'static_shifts': static_shifts,
|
||||
}
|
||||
|
||||
if isinstance(model, BagOfModels):
|
||||
# Special treatment for bag of model.
|
||||
# We explicitely apply multiple times `apply_model` so that the random shifts
|
||||
# are different for each model.
|
||||
|
||||
estimates = 0
|
||||
totals = [0] * len(model.sources)
|
||||
bag_num = len(model.models)
|
||||
fut_length = 0
|
||||
prog_bar = 0
|
||||
current_model = 0 #(bag_num + 1)
|
||||
for sub_model, weight in zip(model.models, model.weights):
|
||||
original_model_device = next(iter(sub_model.parameters())).device
|
||||
sub_model.to(device)
|
||||
fut_length += fut_length
|
||||
current_model += 1
|
||||
out = apply_model(sub_model, mix, **kwargs)
|
||||
sub_model.to(original_model_device)
|
||||
for k, inst_weight in enumerate(weight):
|
||||
out[:, k, :, :] *= inst_weight
|
||||
totals[k] += inst_weight
|
||||
estimates += out
|
||||
del out
|
||||
|
||||
for k in range(estimates.shape[1]):
|
||||
estimates[:, k, :, :] /= totals[k]
|
||||
return estimates
|
||||
|
||||
model.to(device)
|
||||
model.eval()
|
||||
assert transition_power >= 1, "transition_power < 1 leads to weird behavior."
|
||||
batch, channels, length = mix.shape
|
||||
|
||||
if shifts:
|
||||
kwargs['shifts'] = 0
|
||||
max_shift = int(0.5 * model.samplerate)
|
||||
mix = tensor_chunk(mix)
|
||||
padded_mix = mix.padded(length + 2 * max_shift)
|
||||
out = 0
|
||||
for _ in range(shifts):
|
||||
offset = random.randint(0, max_shift)
|
||||
shifted = TensorChunk(padded_mix, offset, length + max_shift - offset)
|
||||
shifted_out = apply_model(model, shifted, **kwargs)
|
||||
out += shifted_out[..., max_shift - offset:]
|
||||
out /= shifts
|
||||
return out
|
||||
elif split:
|
||||
kwargs['split'] = False
|
||||
out = th.zeros(batch, len(model.sources), channels, length, device=mix.device)
|
||||
sum_weight = th.zeros(length, device=mix.device)
|
||||
segment = int(model.samplerate * model.segment)
|
||||
stride = int((1 - overlap) * segment)
|
||||
offsets = range(0, length, stride)
|
||||
scale = float(format(stride / model.samplerate, ".2f"))
|
||||
# We start from a triangle shaped weight, with maximal weight in the middle
|
||||
# of the segment. Then we normalize and take to the power `transition_power`.
|
||||
# Large values of transition power will lead to sharper transitions.
|
||||
weight = th.cat([th.arange(1, segment // 2 + 1, device=device),
|
||||
th.arange(segment - segment // 2, 0, -1, device=device)])
|
||||
assert len(weight) == segment
|
||||
# If the overlap < 50%, this will translate to linear transition when
|
||||
# transition_power is 1.
|
||||
weight = (weight / weight.max())**transition_power
|
||||
futures = []
|
||||
for offset in offsets:
|
||||
chunk = TensorChunk(mix, offset, segment)
|
||||
future = pool.submit(apply_model, model, chunk, **kwargs)
|
||||
futures.append((future, offset))
|
||||
offset += segment
|
||||
if progress:
|
||||
futures = tqdm.tqdm(futures, unit_scale=scale, ncols=120, unit='seconds')
|
||||
for future, offset in futures:
|
||||
if set_progress_bar:
|
||||
fut_length = (len(futures) * bag_num * static_shifts)
|
||||
prog_bar += 1
|
||||
set_progress_bar(0.1, (0.8/fut_length*prog_bar))
|
||||
chunk_out = future.result()
|
||||
chunk_length = chunk_out.shape[-1]
|
||||
out[..., offset:offset + segment] += (weight[:chunk_length] * chunk_out).to(mix.device)
|
||||
sum_weight[offset:offset + segment] += weight[:chunk_length].to(mix.device)
|
||||
assert sum_weight.min() > 0
|
||||
out /= sum_weight
|
||||
return out
|
||||
else:
|
||||
if hasattr(model, 'valid_length'):
|
||||
valid_length = model.valid_length(length)
|
||||
else:
|
||||
valid_length = length
|
||||
mix = tensor_chunk(mix)
|
||||
padded_mix = mix.padded(valid_length).to(device)
|
||||
with th.no_grad():
|
||||
out = model(padded_mix)
|
||||
return center_trim(out, length)
|
||||
|
||||
def demucs_segments(demucs_segment, demucs_model):
|
||||
|
||||
if demucs_segment == 'Default':
|
||||
segment = None
|
||||
if isinstance(demucs_model, BagOfModels):
|
||||
if segment is not None:
|
||||
for sub in demucs_model.models:
|
||||
sub.segment = segment
|
||||
else:
|
||||
if segment is not None:
|
||||
sub.segment = segment
|
||||
else:
|
||||
try:
|
||||
segment = int(demucs_segment)
|
||||
if isinstance(demucs_model, BagOfModels):
|
||||
if segment is not None:
|
||||
for sub in demucs_model.models:
|
||||
sub.segment = segment
|
||||
else:
|
||||
if segment is not None:
|
||||
sub.segment = segment
|
||||
except:
|
||||
segment = None
|
||||
if isinstance(demucs_model, BagOfModels):
|
||||
if segment is not None:
|
||||
for sub in demucs_model.models:
|
||||
sub.segment = segment
|
||||
else:
|
||||
if segment is not None:
|
||||
sub.segment = segment
|
||||
|
||||
return demucs_model
|
||||
459
demucs/demucs.py
Normal file
459
demucs/demucs.py
Normal file
@@ -0,0 +1,459 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import math
|
||||
import typing as tp
|
||||
|
||||
import julius
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .states import capture_init
|
||||
from .utils import center_trim, unfold
|
||||
|
||||
|
||||
class BLSTM(nn.Module):
|
||||
"""
|
||||
BiLSTM with same hidden units as input dim.
|
||||
If `max_steps` is not None, input will be splitting in overlapping
|
||||
chunks and the LSTM applied separately on each chunk.
|
||||
"""
|
||||
def __init__(self, dim, layers=1, max_steps=None, skip=False):
|
||||
super().__init__()
|
||||
assert max_steps is None or max_steps % 4 == 0
|
||||
self.max_steps = max_steps
|
||||
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
|
||||
self.linear = nn.Linear(2 * dim, dim)
|
||||
self.skip = skip
|
||||
|
||||
def forward(self, x):
|
||||
B, C, T = x.shape
|
||||
y = x
|
||||
framed = False
|
||||
if self.max_steps is not None and T > self.max_steps:
|
||||
width = self.max_steps
|
||||
stride = width // 2
|
||||
frames = unfold(x, width, stride)
|
||||
nframes = frames.shape[2]
|
||||
framed = True
|
||||
x = frames.permute(0, 2, 1, 3).reshape(-1, C, width)
|
||||
|
||||
x = x.permute(2, 0, 1)
|
||||
|
||||
x = self.lstm(x)[0]
|
||||
x = self.linear(x)
|
||||
x = x.permute(1, 2, 0)
|
||||
if framed:
|
||||
out = []
|
||||
frames = x.reshape(B, -1, C, width)
|
||||
limit = stride // 2
|
||||
for k in range(nframes):
|
||||
if k == 0:
|
||||
out.append(frames[:, k, :, :-limit])
|
||||
elif k == nframes - 1:
|
||||
out.append(frames[:, k, :, limit:])
|
||||
else:
|
||||
out.append(frames[:, k, :, limit:-limit])
|
||||
out = torch.cat(out, -1)
|
||||
out = out[..., :T]
|
||||
x = out
|
||||
if self.skip:
|
||||
x = x + y
|
||||
return x
|
||||
|
||||
|
||||
def rescale_conv(conv, reference):
|
||||
"""Rescale initial weight scale. It is unclear why it helps but it certainly does.
|
||||
"""
|
||||
std = conv.weight.std().detach()
|
||||
scale = (std / reference)**0.5
|
||||
conv.weight.data /= scale
|
||||
if conv.bias is not None:
|
||||
conv.bias.data /= scale
|
||||
|
||||
|
||||
def rescale_module(module, reference):
|
||||
for sub in module.modules():
|
||||
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d, nn.Conv2d, nn.ConvTranspose2d)):
|
||||
rescale_conv(sub, reference)
|
||||
|
||||
|
||||
class LayerScale(nn.Module):
|
||||
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
|
||||
This rescales diagonaly residual outputs close to 0 initially, then learnt.
|
||||
"""
|
||||
def __init__(self, channels: int, init: float = 0):
|
||||
super().__init__()
|
||||
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
|
||||
self.scale.data[:] = init
|
||||
|
||||
def forward(self, x):
|
||||
return self.scale[:, None] * x
|
||||
|
||||
|
||||
class DConv(nn.Module):
|
||||
"""
|
||||
New residual branches in each encoder layer.
|
||||
This alternates dilated convolutions, potentially with LSTMs and attention.
|
||||
Also before entering each residual branch, dimension is projected on a smaller subspace,
|
||||
e.g. of dim `channels // compress`.
|
||||
"""
|
||||
def __init__(self, channels: int, compress: float = 4, depth: int = 2, init: float = 1e-4,
|
||||
norm=True, attn=False, heads=4, ndecay=4, lstm=False, gelu=True,
|
||||
kernel=3, dilate=True):
|
||||
"""
|
||||
Args:
|
||||
channels: input/output channels for residual branch.
|
||||
compress: amount of channel compression inside the branch.
|
||||
depth: number of layers in the residual branch. Each layer has its own
|
||||
projection, and potentially LSTM and attention.
|
||||
init: initial scale for LayerNorm.
|
||||
norm: use GroupNorm.
|
||||
attn: use LocalAttention.
|
||||
heads: number of heads for the LocalAttention.
|
||||
ndecay: number of decay controls in the LocalAttention.
|
||||
lstm: use LSTM.
|
||||
gelu: Use GELU activation.
|
||||
kernel: kernel size for the (dilated) convolutions.
|
||||
dilate: if true, use dilation, increasing with the depth.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
assert kernel % 2 == 1
|
||||
self.channels = channels
|
||||
self.compress = compress
|
||||
self.depth = abs(depth)
|
||||
dilate = depth > 0
|
||||
|
||||
norm_fn: tp.Callable[[int], nn.Module]
|
||||
norm_fn = lambda d: nn.Identity() # noqa
|
||||
if norm:
|
||||
norm_fn = lambda d: nn.GroupNorm(1, d) # noqa
|
||||
|
||||
hidden = int(channels / compress)
|
||||
|
||||
act: tp.Type[nn.Module]
|
||||
if gelu:
|
||||
act = nn.GELU
|
||||
else:
|
||||
act = nn.ReLU
|
||||
|
||||
self.layers = nn.ModuleList([])
|
||||
for d in range(self.depth):
|
||||
dilation = 2 ** d if dilate else 1
|
||||
padding = dilation * (kernel // 2)
|
||||
mods = [
|
||||
nn.Conv1d(channels, hidden, kernel, dilation=dilation, padding=padding),
|
||||
norm_fn(hidden), act(),
|
||||
nn.Conv1d(hidden, 2 * channels, 1),
|
||||
norm_fn(2 * channels), nn.GLU(1),
|
||||
LayerScale(channels, init),
|
||||
]
|
||||
if attn:
|
||||
mods.insert(3, LocalState(hidden, heads=heads, ndecay=ndecay))
|
||||
if lstm:
|
||||
mods.insert(3, BLSTM(hidden, layers=2, max_steps=200, skip=True))
|
||||
layer = nn.Sequential(*mods)
|
||||
self.layers.append(layer)
|
||||
|
||||
def forward(self, x):
|
||||
for layer in self.layers:
|
||||
x = x + layer(x)
|
||||
return x
|
||||
|
||||
|
||||
class LocalState(nn.Module):
|
||||
"""Local state allows to have attention based only on data (no positional embedding),
|
||||
but while setting a constraint on the time window (e.g. decaying penalty term).
|
||||
|
||||
Also a failed experiments with trying to provide some frequency based attention.
|
||||
"""
|
||||
def __init__(self, channels: int, heads: int = 4, nfreqs: int = 0, ndecay: int = 4):
|
||||
super().__init__()
|
||||
assert channels % heads == 0, (channels, heads)
|
||||
self.heads = heads
|
||||
self.nfreqs = nfreqs
|
||||
self.ndecay = ndecay
|
||||
self.content = nn.Conv1d(channels, channels, 1)
|
||||
self.query = nn.Conv1d(channels, channels, 1)
|
||||
self.key = nn.Conv1d(channels, channels, 1)
|
||||
if nfreqs:
|
||||
self.query_freqs = nn.Conv1d(channels, heads * nfreqs, 1)
|
||||
if ndecay:
|
||||
self.query_decay = nn.Conv1d(channels, heads * ndecay, 1)
|
||||
# Initialize decay close to zero (there is a sigmoid), for maximum initial window.
|
||||
self.query_decay.weight.data *= 0.01
|
||||
assert self.query_decay.bias is not None # stupid type checker
|
||||
self.query_decay.bias.data[:] = -2
|
||||
self.proj = nn.Conv1d(channels + heads * nfreqs, channels, 1)
|
||||
|
||||
def forward(self, x):
|
||||
B, C, T = x.shape
|
||||
heads = self.heads
|
||||
indexes = torch.arange(T, device=x.device, dtype=x.dtype)
|
||||
# left index are keys, right index are queries
|
||||
delta = indexes[:, None] - indexes[None, :]
|
||||
|
||||
queries = self.query(x).view(B, heads, -1, T)
|
||||
keys = self.key(x).view(B, heads, -1, T)
|
||||
# t are keys, s are queries
|
||||
dots = torch.einsum("bhct,bhcs->bhts", keys, queries)
|
||||
dots /= keys.shape[2]**0.5
|
||||
if self.nfreqs:
|
||||
periods = torch.arange(1, self.nfreqs + 1, device=x.device, dtype=x.dtype)
|
||||
freq_kernel = torch.cos(2 * math.pi * delta / periods.view(-1, 1, 1))
|
||||
freq_q = self.query_freqs(x).view(B, heads, -1, T) / self.nfreqs ** 0.5
|
||||
dots += torch.einsum("fts,bhfs->bhts", freq_kernel, freq_q)
|
||||
if self.ndecay:
|
||||
decays = torch.arange(1, self.ndecay + 1, device=x.device, dtype=x.dtype)
|
||||
decay_q = self.query_decay(x).view(B, heads, -1, T)
|
||||
decay_q = torch.sigmoid(decay_q) / 2
|
||||
decay_kernel = - decays.view(-1, 1, 1) * delta.abs() / self.ndecay**0.5
|
||||
dots += torch.einsum("fts,bhfs->bhts", decay_kernel, decay_q)
|
||||
|
||||
# Kill self reference.
|
||||
dots.masked_fill_(torch.eye(T, device=dots.device, dtype=torch.bool), -100)
|
||||
weights = torch.softmax(dots, dim=2)
|
||||
|
||||
content = self.content(x).view(B, heads, -1, T)
|
||||
result = torch.einsum("bhts,bhct->bhcs", weights, content)
|
||||
if self.nfreqs:
|
||||
time_sig = torch.einsum("bhts,fts->bhfs", weights, freq_kernel)
|
||||
result = torch.cat([result, time_sig], 2)
|
||||
result = result.reshape(B, -1, T)
|
||||
return x + self.proj(result)
|
||||
|
||||
|
||||
class Demucs(nn.Module):
|
||||
@capture_init
|
||||
def __init__(self,
|
||||
sources,
|
||||
# Channels
|
||||
audio_channels=2,
|
||||
channels=64,
|
||||
growth=2.,
|
||||
# Main structure
|
||||
depth=6,
|
||||
rewrite=True,
|
||||
lstm_layers=0,
|
||||
# Convolutions
|
||||
kernel_size=8,
|
||||
stride=4,
|
||||
context=1,
|
||||
# Activations
|
||||
gelu=True,
|
||||
glu=True,
|
||||
# Normalization
|
||||
norm_starts=4,
|
||||
norm_groups=4,
|
||||
# DConv residual branch
|
||||
dconv_mode=1,
|
||||
dconv_depth=2,
|
||||
dconv_comp=4,
|
||||
dconv_attn=4,
|
||||
dconv_lstm=4,
|
||||
dconv_init=1e-4,
|
||||
# Pre/post processing
|
||||
normalize=True,
|
||||
resample=True,
|
||||
# Weight init
|
||||
rescale=0.1,
|
||||
# Metadata
|
||||
samplerate=44100,
|
||||
segment=4 * 10):
|
||||
"""
|
||||
Args:
|
||||
sources (list[str]): list of source names
|
||||
audio_channels (int): stereo or mono
|
||||
channels (int): first convolution channels
|
||||
depth (int): number of encoder/decoder layers
|
||||
growth (float): multiply (resp divide) number of channels by that
|
||||
for each layer of the encoder (resp decoder)
|
||||
depth (int): number of layers in the encoder and in the decoder.
|
||||
rewrite (bool): add 1x1 convolution to each layer.
|
||||
lstm_layers (int): number of lstm layers, 0 = no lstm. Deactivated
|
||||
by default, as this is now replaced by the smaller and faster small LSTMs
|
||||
in the DConv branches.
|
||||
kernel_size (int): kernel size for convolutions
|
||||
stride (int): stride for convolutions
|
||||
context (int): kernel size of the convolution in the
|
||||
decoder before the transposed convolution. If > 1,
|
||||
will provide some context from neighboring time steps.
|
||||
gelu: use GELU activation function.
|
||||
glu (bool): use glu instead of ReLU for the 1x1 rewrite conv.
|
||||
norm_starts: layer at which group norm starts being used.
|
||||
decoder layers are numbered in reverse order.
|
||||
norm_groups: number of groups for group norm.
|
||||
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
||||
dconv_depth: depth of residual DConv branch.
|
||||
dconv_comp: compression of DConv branch.
|
||||
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
||||
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
||||
dconv_init: initial scale for the DConv branch LayerScale.
|
||||
normalize (bool): normalizes the input audio on the fly, and scales back
|
||||
the output by the same amount.
|
||||
resample (bool): upsample x2 the input and downsample /2 the output.
|
||||
rescale (int): rescale initial weights of convolutions
|
||||
to get their standard deviation closer to `rescale`.
|
||||
samplerate (int): stored as meta information for easing
|
||||
future evaluations of the model.
|
||||
segment (float): duration of the chunks of audio to ideally evaluate the model on.
|
||||
This is used by `demucs.apply.apply_model`.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
self.audio_channels = audio_channels
|
||||
self.sources = sources
|
||||
self.kernel_size = kernel_size
|
||||
self.context = context
|
||||
self.stride = stride
|
||||
self.depth = depth
|
||||
self.resample = resample
|
||||
self.channels = channels
|
||||
self.normalize = normalize
|
||||
self.samplerate = samplerate
|
||||
self.segment = segment
|
||||
self.encoder = nn.ModuleList()
|
||||
self.decoder = nn.ModuleList()
|
||||
self.skip_scales = nn.ModuleList()
|
||||
|
||||
if glu:
|
||||
activation = nn.GLU(dim=1)
|
||||
ch_scale = 2
|
||||
else:
|
||||
activation = nn.ReLU()
|
||||
ch_scale = 1
|
||||
if gelu:
|
||||
act2 = nn.GELU
|
||||
else:
|
||||
act2 = nn.ReLU
|
||||
|
||||
in_channels = audio_channels
|
||||
padding = 0
|
||||
for index in range(depth):
|
||||
norm_fn = lambda d: nn.Identity() # noqa
|
||||
if index >= norm_starts:
|
||||
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
||||
|
||||
encode = []
|
||||
encode += [
|
||||
nn.Conv1d(in_channels, channels, kernel_size, stride),
|
||||
norm_fn(channels),
|
||||
act2(),
|
||||
]
|
||||
attn = index >= dconv_attn
|
||||
lstm = index >= dconv_lstm
|
||||
if dconv_mode & 1:
|
||||
encode += [DConv(channels, depth=dconv_depth, init=dconv_init,
|
||||
compress=dconv_comp, attn=attn, lstm=lstm)]
|
||||
if rewrite:
|
||||
encode += [
|
||||
nn.Conv1d(channels, ch_scale * channels, 1),
|
||||
norm_fn(ch_scale * channels), activation]
|
||||
self.encoder.append(nn.Sequential(*encode))
|
||||
|
||||
decode = []
|
||||
if index > 0:
|
||||
out_channels = in_channels
|
||||
else:
|
||||
out_channels = len(self.sources) * audio_channels
|
||||
if rewrite:
|
||||
decode += [
|
||||
nn.Conv1d(channels, ch_scale * channels, 2 * context + 1, padding=context),
|
||||
norm_fn(ch_scale * channels), activation]
|
||||
if dconv_mode & 2:
|
||||
decode += [DConv(channels, depth=dconv_depth, init=dconv_init,
|
||||
compress=dconv_comp, attn=attn, lstm=lstm)]
|
||||
decode += [nn.ConvTranspose1d(channels, out_channels,
|
||||
kernel_size, stride, padding=padding)]
|
||||
if index > 0:
|
||||
decode += [norm_fn(out_channels), act2()]
|
||||
self.decoder.insert(0, nn.Sequential(*decode))
|
||||
in_channels = channels
|
||||
channels = int(growth * channels)
|
||||
|
||||
channels = in_channels
|
||||
if lstm_layers:
|
||||
self.lstm = BLSTM(channels, lstm_layers)
|
||||
else:
|
||||
self.lstm = None
|
||||
|
||||
if rescale:
|
||||
rescale_module(self, reference=rescale)
|
||||
|
||||
def valid_length(self, length):
|
||||
"""
|
||||
Return the nearest valid length to use with the model so that
|
||||
there is no time steps left over in a convolution, e.g. for all
|
||||
layers, size of the input - kernel_size % stride = 0.
|
||||
|
||||
Note that input are automatically padded if necessary to ensure that the output
|
||||
has the same length as the input.
|
||||
"""
|
||||
if self.resample:
|
||||
length *= 2
|
||||
|
||||
for _ in range(self.depth):
|
||||
length = math.ceil((length - self.kernel_size) / self.stride) + 1
|
||||
length = max(1, length)
|
||||
|
||||
for idx in range(self.depth):
|
||||
length = (length - 1) * self.stride + self.kernel_size
|
||||
|
||||
if self.resample:
|
||||
length = math.ceil(length / 2)
|
||||
return int(length)
|
||||
|
||||
def forward(self, mix):
|
||||
x = mix
|
||||
length = x.shape[-1]
|
||||
|
||||
if self.normalize:
|
||||
mono = mix.mean(dim=1, keepdim=True)
|
||||
mean = mono.mean(dim=-1, keepdim=True)
|
||||
std = mono.std(dim=-1, keepdim=True)
|
||||
x = (x - mean) / (1e-5 + std)
|
||||
else:
|
||||
mean = 0
|
||||
std = 1
|
||||
|
||||
delta = self.valid_length(length) - length
|
||||
x = F.pad(x, (delta // 2, delta - delta // 2))
|
||||
|
||||
if self.resample:
|
||||
x = julius.resample_frac(x, 1, 2)
|
||||
|
||||
saved = []
|
||||
for encode in self.encoder:
|
||||
x = encode(x)
|
||||
saved.append(x)
|
||||
|
||||
if self.lstm:
|
||||
x = self.lstm(x)
|
||||
|
||||
for decode in self.decoder:
|
||||
skip = saved.pop(-1)
|
||||
skip = center_trim(skip, x)
|
||||
x = decode(x + skip)
|
||||
|
||||
if self.resample:
|
||||
x = julius.resample_frac(x, 2, 1)
|
||||
x = x * std + mean
|
||||
x = center_trim(x, length)
|
||||
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1))
|
||||
return x
|
||||
|
||||
def load_state_dict(self, state, strict=True):
|
||||
# fix a mismatch with previous generation Demucs models.
|
||||
for idx in range(self.depth):
|
||||
for a in ['encoder', 'decoder']:
|
||||
for b in ['bias', 'weight']:
|
||||
new = f'{a}.{idx}.3.{b}'
|
||||
old = f'{a}.{idx}.2.{b}'
|
||||
if old in state and new not in state:
|
||||
state[new] = state.pop(old)
|
||||
super().load_state_dict(state, strict=strict)
|
||||
502
demucs/filtering.py
Normal file
502
demucs/filtering.py
Normal file
@@ -0,0 +1,502 @@
|
||||
from typing import Optional
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
def atan2(y, x):
|
||||
r"""Element-wise arctangent function of y/x.
|
||||
Returns a new tensor with signed angles in radians.
|
||||
It is an alternative implementation of torch.atan2
|
||||
|
||||
Args:
|
||||
y (Tensor): First input tensor
|
||||
x (Tensor): Second input tensor [shape=y.shape]
|
||||
|
||||
Returns:
|
||||
Tensor: [shape=y.shape].
|
||||
"""
|
||||
pi = 2 * torch.asin(torch.tensor(1.0))
|
||||
x += ((x == 0) & (y == 0)) * 1.0
|
||||
out = torch.atan(y / x)
|
||||
out += ((y >= 0) & (x < 0)) * pi
|
||||
out -= ((y < 0) & (x < 0)) * pi
|
||||
out *= 1 - ((y > 0) & (x == 0)) * 1.0
|
||||
out += ((y > 0) & (x == 0)) * (pi / 2)
|
||||
out *= 1 - ((y < 0) & (x == 0)) * 1.0
|
||||
out += ((y < 0) & (x == 0)) * (-pi / 2)
|
||||
return out
|
||||
|
||||
|
||||
# Define basic complex operations on torch.Tensor objects whose last dimension
|
||||
# consists in the concatenation of the real and imaginary parts.
|
||||
|
||||
|
||||
def _norm(x: torch.Tensor) -> torch.Tensor:
|
||||
r"""Computes the norm value of a torch Tensor, assuming that it
|
||||
comes as real and imaginary part in its last dimension.
|
||||
|
||||
Args:
|
||||
x (Tensor): Input Tensor of shape [shape=(..., 2)]
|
||||
|
||||
Returns:
|
||||
Tensor: shape as x excluding the last dimension.
|
||||
"""
|
||||
return torch.abs(x[..., 0]) ** 2 + torch.abs(x[..., 1]) ** 2
|
||||
|
||||
|
||||
def _mul_add(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
"""Element-wise multiplication of two complex Tensors described
|
||||
through their real and imaginary parts.
|
||||
The result is added to the `out` tensor"""
|
||||
|
||||
# check `out` and allocate it if needed
|
||||
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)])
|
||||
if out is None or out.shape != target_shape:
|
||||
out = torch.zeros(target_shape, dtype=a.dtype, device=a.device)
|
||||
if out is a:
|
||||
real_a = a[..., 0]
|
||||
out[..., 0] = out[..., 0] + (real_a * b[..., 0] - a[..., 1] * b[..., 1])
|
||||
out[..., 1] = out[..., 1] + (real_a * b[..., 1] + a[..., 1] * b[..., 0])
|
||||
else:
|
||||
out[..., 0] = out[..., 0] + (a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1])
|
||||
out[..., 1] = out[..., 1] + (a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0])
|
||||
return out
|
||||
|
||||
|
||||
def _mul(a: torch.Tensor, b: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
"""Element-wise multiplication of two complex Tensors described
|
||||
through their real and imaginary parts
|
||||
can work in place in case out is a only"""
|
||||
target_shape = torch.Size([max(sa, sb) for (sa, sb) in zip(a.shape, b.shape)])
|
||||
if out is None or out.shape != target_shape:
|
||||
out = torch.zeros(target_shape, dtype=a.dtype, device=a.device)
|
||||
if out is a:
|
||||
real_a = a[..., 0]
|
||||
out[..., 0] = real_a * b[..., 0] - a[..., 1] * b[..., 1]
|
||||
out[..., 1] = real_a * b[..., 1] + a[..., 1] * b[..., 0]
|
||||
else:
|
||||
out[..., 0] = a[..., 0] * b[..., 0] - a[..., 1] * b[..., 1]
|
||||
out[..., 1] = a[..., 0] * b[..., 1] + a[..., 1] * b[..., 0]
|
||||
return out
|
||||
|
||||
|
||||
def _inv(z: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
"""Element-wise multiplicative inverse of a Tensor with complex
|
||||
entries described through their real and imaginary parts.
|
||||
can work in place in case out is z"""
|
||||
ez = _norm(z)
|
||||
if out is None or out.shape != z.shape:
|
||||
out = torch.zeros_like(z)
|
||||
out[..., 0] = z[..., 0] / ez
|
||||
out[..., 1] = -z[..., 1] / ez
|
||||
return out
|
||||
|
||||
|
||||
def _conj(z, out: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
"""Element-wise complex conjugate of a Tensor with complex entries
|
||||
described through their real and imaginary parts.
|
||||
can work in place in case out is z"""
|
||||
if out is None or out.shape != z.shape:
|
||||
out = torch.zeros_like(z)
|
||||
out[..., 0] = z[..., 0]
|
||||
out[..., 1] = -z[..., 1]
|
||||
return out
|
||||
|
||||
|
||||
def _invert(M: torch.Tensor, out: Optional[torch.Tensor] = None) -> torch.Tensor:
|
||||
"""
|
||||
Invert 1x1 or 2x2 matrices
|
||||
|
||||
Will generate errors if the matrices are singular: user must handle this
|
||||
through his own regularization schemes.
|
||||
|
||||
Args:
|
||||
M (Tensor): [shape=(..., nb_channels, nb_channels, 2)]
|
||||
matrices to invert: must be square along dimensions -3 and -2
|
||||
|
||||
Returns:
|
||||
invM (Tensor): [shape=M.shape]
|
||||
inverses of M
|
||||
"""
|
||||
nb_channels = M.shape[-2]
|
||||
|
||||
if out is None or out.shape != M.shape:
|
||||
out = torch.empty_like(M)
|
||||
|
||||
if nb_channels == 1:
|
||||
# scalar case
|
||||
out = _inv(M, out)
|
||||
elif nb_channels == 2:
|
||||
# two channels case: analytical expression
|
||||
|
||||
# first compute the determinent
|
||||
det = _mul(M[..., 0, 0, :], M[..., 1, 1, :])
|
||||
det = det - _mul(M[..., 0, 1, :], M[..., 1, 0, :])
|
||||
# invert it
|
||||
invDet = _inv(det)
|
||||
|
||||
# then fill out the matrix with the inverse
|
||||
out[..., 0, 0, :] = _mul(invDet, M[..., 1, 1, :], out[..., 0, 0, :])
|
||||
out[..., 1, 0, :] = _mul(-invDet, M[..., 1, 0, :], out[..., 1, 0, :])
|
||||
out[..., 0, 1, :] = _mul(-invDet, M[..., 0, 1, :], out[..., 0, 1, :])
|
||||
out[..., 1, 1, :] = _mul(invDet, M[..., 0, 0, :], out[..., 1, 1, :])
|
||||
else:
|
||||
raise Exception("Only 2 channels are supported for the torch version.")
|
||||
return out
|
||||
|
||||
|
||||
# Now define the signal-processing low-level functions used by the Separator
|
||||
|
||||
|
||||
def expectation_maximization(
|
||||
y: torch.Tensor,
|
||||
x: torch.Tensor,
|
||||
iterations: int = 2,
|
||||
eps: float = 1e-10,
|
||||
batch_size: int = 200,
|
||||
):
|
||||
r"""Expectation maximization algorithm, for refining source separation
|
||||
estimates.
|
||||
|
||||
This algorithm allows to make source separation results better by
|
||||
enforcing multichannel consistency for the estimates. This usually means
|
||||
a better perceptual quality in terms of spatial artifacts.
|
||||
|
||||
The implementation follows the details presented in [1]_, taking
|
||||
inspiration from the original EM algorithm proposed in [2]_ and its
|
||||
weighted refinement proposed in [3]_, [4]_.
|
||||
It works by iteratively:
|
||||
|
||||
* Re-estimate source parameters (power spectral densities and spatial
|
||||
covariance matrices) through :func:`get_local_gaussian_model`.
|
||||
|
||||
* Separate again the mixture with the new parameters by first computing
|
||||
the new modelled mixture covariance matrices with :func:`get_mix_model`,
|
||||
prepare the Wiener filters through :func:`wiener_gain` and apply them
|
||||
with :func:`apply_filter``.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] S. Uhlich and M. Porcu and F. Giron and M. Enenkl and T. Kemp and
|
||||
N. Takahashi and Y. Mitsufuji, "Improving music source separation based
|
||||
on deep neural networks through data augmentation and network
|
||||
blending." 2017 IEEE International Conference on Acoustics, Speech
|
||||
and Signal Processing (ICASSP). IEEE, 2017.
|
||||
|
||||
.. [2] N.Q. Duong and E. Vincent and R.Gribonval. "Under-determined
|
||||
reverberant audio source separation using a full-rank spatial
|
||||
covariance model." IEEE Transactions on Audio, Speech, and Language
|
||||
Processing 18.7 (2010): 1830-1840.
|
||||
|
||||
.. [3] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel audio source
|
||||
separation with deep neural networks." IEEE/ACM Transactions on Audio,
|
||||
Speech, and Language Processing 24.9 (2016): 1652-1664.
|
||||
|
||||
.. [4] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel music
|
||||
separation with deep neural networks." 2016 24th European Signal
|
||||
Processing Conference (EUSIPCO). IEEE, 2016.
|
||||
|
||||
.. [5] A. Liutkus and R. Badeau and G. Richard "Kernel additive models for
|
||||
source separation." IEEE Transactions on Signal Processing
|
||||
62.16 (2014): 4298-4310.
|
||||
|
||||
Args:
|
||||
y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)]
|
||||
initial estimates for the sources
|
||||
x (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2)]
|
||||
complex STFT of the mixture signal
|
||||
iterations (int): [scalar]
|
||||
number of iterations for the EM algorithm.
|
||||
eps (float or None): [scalar]
|
||||
The epsilon value to use for regularization and filters.
|
||||
|
||||
Returns:
|
||||
y (Tensor): [shape=(nb_frames, nb_bins, nb_channels, 2, nb_sources)]
|
||||
estimated sources after iterations
|
||||
v (Tensor): [shape=(nb_frames, nb_bins, nb_sources)]
|
||||
estimated power spectral densities
|
||||
R (Tensor): [shape=(nb_bins, nb_channels, nb_channels, 2, nb_sources)]
|
||||
estimated spatial covariance matrices
|
||||
|
||||
Notes:
|
||||
* You need an initial estimate for the sources to apply this
|
||||
algorithm. This is precisely what the :func:`wiener` function does.
|
||||
* This algorithm *is not* an implementation of the "exact" EM
|
||||
proposed in [1]_. In particular, it does compute the posterior
|
||||
covariance matrices the same (exact) way. Instead, it uses the
|
||||
simplified approximate scheme initially proposed in [5]_ and further
|
||||
refined in [3]_, [4]_, that boils down to just take the empirical
|
||||
covariance of the recent source estimates, followed by a weighted
|
||||
average for the update of the spatial covariance matrix. It has been
|
||||
empirically demonstrated that this simplified algorithm is more
|
||||
robust for music separation.
|
||||
|
||||
Warning:
|
||||
It is *very* important to make sure `x.dtype` is `torch.float64`
|
||||
if you want double precision, because this function will **not**
|
||||
do such conversion for you from `torch.complex32`, in case you want the
|
||||
smaller RAM usage on purpose.
|
||||
|
||||
It is usually always better in terms of quality to have double
|
||||
precision, by e.g. calling :func:`expectation_maximization`
|
||||
with ``x.to(torch.float64)``.
|
||||
"""
|
||||
# dimensions
|
||||
(nb_frames, nb_bins, nb_channels) = x.shape[:-1]
|
||||
nb_sources = y.shape[-1]
|
||||
|
||||
regularization = torch.cat(
|
||||
(
|
||||
torch.eye(nb_channels, dtype=x.dtype, device=x.device)[..., None],
|
||||
torch.zeros((nb_channels, nb_channels, 1), dtype=x.dtype, device=x.device),
|
||||
),
|
||||
dim=2,
|
||||
)
|
||||
regularization = torch.sqrt(torch.as_tensor(eps)) * (
|
||||
regularization[None, None, ...].expand((-1, nb_bins, -1, -1, -1))
|
||||
)
|
||||
|
||||
# allocate the spatial covariance matrices
|
||||
R = [
|
||||
torch.zeros((nb_bins, nb_channels, nb_channels, 2), dtype=x.dtype, device=x.device)
|
||||
for j in range(nb_sources)
|
||||
]
|
||||
weight: torch.Tensor = torch.zeros((nb_bins,), dtype=x.dtype, device=x.device)
|
||||
|
||||
v: torch.Tensor = torch.zeros((nb_frames, nb_bins, nb_sources), dtype=x.dtype, device=x.device)
|
||||
for it in range(iterations):
|
||||
# constructing the mixture covariance matrix. Doing it with a loop
|
||||
# to avoid storing anytime in RAM the whole 6D tensor
|
||||
|
||||
# update the PSD as the average spectrogram over channels
|
||||
v = torch.mean(torch.abs(y[..., 0, :]) ** 2 + torch.abs(y[..., 1, :]) ** 2, dim=-2)
|
||||
|
||||
# update spatial covariance matrices (weighted update)
|
||||
for j in range(nb_sources):
|
||||
R[j] = torch.tensor(0.0, device=x.device)
|
||||
weight = torch.tensor(eps, device=x.device)
|
||||
pos: int = 0
|
||||
batch_size = batch_size if batch_size else nb_frames
|
||||
while pos < nb_frames:
|
||||
t = torch.arange(pos, min(nb_frames, pos + batch_size))
|
||||
pos = int(t[-1]) + 1
|
||||
|
||||
R[j] = R[j] + torch.sum(_covariance(y[t, ..., j]), dim=0)
|
||||
weight = weight + torch.sum(v[t, ..., j], dim=0)
|
||||
R[j] = R[j] / weight[..., None, None, None]
|
||||
weight = torch.zeros_like(weight)
|
||||
|
||||
# cloning y if we track gradient, because we're going to update it
|
||||
if y.requires_grad:
|
||||
y = y.clone()
|
||||
|
||||
pos = 0
|
||||
while pos < nb_frames:
|
||||
t = torch.arange(pos, min(nb_frames, pos + batch_size))
|
||||
pos = int(t[-1]) + 1
|
||||
|
||||
y[t, ...] = torch.tensor(0.0, device=x.device, dtype=x.dtype)
|
||||
|
||||
# compute mix covariance matrix
|
||||
Cxx = regularization
|
||||
for j in range(nb_sources):
|
||||
Cxx = Cxx + (v[t, ..., j, None, None, None] * R[j][None, ...].clone())
|
||||
|
||||
# invert it
|
||||
inv_Cxx = _invert(Cxx)
|
||||
|
||||
# separate the sources
|
||||
for j in range(nb_sources):
|
||||
|
||||
# create a wiener gain for this source
|
||||
gain = torch.zeros_like(inv_Cxx)
|
||||
|
||||
# computes multichannel Wiener gain as v_j R_j inv_Cxx
|
||||
indices = torch.cartesian_prod(
|
||||
torch.arange(nb_channels),
|
||||
torch.arange(nb_channels),
|
||||
torch.arange(nb_channels),
|
||||
)
|
||||
for index in indices:
|
||||
gain[:, :, index[0], index[1], :] = _mul_add(
|
||||
R[j][None, :, index[0], index[2], :].clone(),
|
||||
inv_Cxx[:, :, index[2], index[1], :],
|
||||
gain[:, :, index[0], index[1], :],
|
||||
)
|
||||
gain = gain * v[t, ..., None, None, None, j]
|
||||
|
||||
# apply it to the mixture
|
||||
for i in range(nb_channels):
|
||||
y[t, ..., j] = _mul_add(gain[..., i, :], x[t, ..., i, None, :], y[t, ..., j])
|
||||
|
||||
return y, v, R
|
||||
|
||||
|
||||
def wiener(
|
||||
targets_spectrograms: torch.Tensor,
|
||||
mix_stft: torch.Tensor,
|
||||
iterations: int = 1,
|
||||
softmask: bool = False,
|
||||
residual: bool = False,
|
||||
scale_factor: float = 10.0,
|
||||
eps: float = 1e-10,
|
||||
):
|
||||
"""Wiener-based separation for multichannel audio.
|
||||
|
||||
The method uses the (possibly multichannel) spectrograms of the
|
||||
sources to separate the (complex) Short Term Fourier Transform of the
|
||||
mix. Separation is done in a sequential way by:
|
||||
|
||||
* Getting an initial estimate. This can be done in two ways: either by
|
||||
directly using the spectrograms with the mixture phase, or
|
||||
by using a softmasking strategy. This initial phase is controlled
|
||||
by the `softmask` flag.
|
||||
|
||||
* If required, adding an additional residual target as the mix minus
|
||||
all targets.
|
||||
|
||||
* Refinining these initial estimates through a call to
|
||||
:func:`expectation_maximization` if the number of iterations is nonzero.
|
||||
|
||||
This implementation also allows to specify the epsilon value used for
|
||||
regularization. It is based on [1]_, [2]_, [3]_, [4]_.
|
||||
|
||||
References
|
||||
----------
|
||||
.. [1] S. Uhlich and M. Porcu and F. Giron and M. Enenkl and T. Kemp and
|
||||
N. Takahashi and Y. Mitsufuji, "Improving music source separation based
|
||||
on deep neural networks through data augmentation and network
|
||||
blending." 2017 IEEE International Conference on Acoustics, Speech
|
||||
and Signal Processing (ICASSP). IEEE, 2017.
|
||||
|
||||
.. [2] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel audio source
|
||||
separation with deep neural networks." IEEE/ACM Transactions on Audio,
|
||||
Speech, and Language Processing 24.9 (2016): 1652-1664.
|
||||
|
||||
.. [3] A. Nugraha and A. Liutkus and E. Vincent. "Multichannel music
|
||||
separation with deep neural networks." 2016 24th European Signal
|
||||
Processing Conference (EUSIPCO). IEEE, 2016.
|
||||
|
||||
.. [4] A. Liutkus and R. Badeau and G. Richard "Kernel additive models for
|
||||
source separation." IEEE Transactions on Signal Processing
|
||||
62.16 (2014): 4298-4310.
|
||||
|
||||
Args:
|
||||
targets_spectrograms (Tensor): spectrograms of the sources
|
||||
[shape=(nb_frames, nb_bins, nb_channels, nb_sources)].
|
||||
This is a nonnegative tensor that is
|
||||
usually the output of the actual separation method of the user. The
|
||||
spectrograms may be mono, but they need to be 4-dimensional in all
|
||||
cases.
|
||||
mix_stft (Tensor): [shape=(nb_frames, nb_bins, nb_channels, complex=2)]
|
||||
STFT of the mixture signal.
|
||||
iterations (int): [scalar]
|
||||
number of iterations for the EM algorithm
|
||||
softmask (bool): Describes how the initial estimates are obtained.
|
||||
* if `False`, then the mixture phase will directly be used with the
|
||||
spectrogram as initial estimates.
|
||||
* if `True`, initial estimates are obtained by multiplying the
|
||||
complex mix element-wise with the ratio of each target spectrogram
|
||||
with the sum of them all. This strategy is better if the model are
|
||||
not really good, and worse otherwise.
|
||||
residual (bool): if `True`, an additional target is created, which is
|
||||
equal to the mixture minus the other targets, before application of
|
||||
expectation maximization
|
||||
eps (float): Epsilon value to use for computing the separations.
|
||||
This is used whenever division with a model energy is
|
||||
performed, i.e. when softmasking and when iterating the EM.
|
||||
It can be understood as the energy of the additional white noise
|
||||
that is taken out when separating.
|
||||
|
||||
Returns:
|
||||
Tensor: shape=(nb_frames, nb_bins, nb_channels, complex=2, nb_sources)
|
||||
STFT of estimated sources
|
||||
|
||||
Notes:
|
||||
* Be careful that you need *magnitude spectrogram estimates* for the
|
||||
case `softmask==False`.
|
||||
* `softmask=False` is recommended
|
||||
* The epsilon value will have a huge impact on performance. If it's
|
||||
large, only the parts of the signal with a significant energy will
|
||||
be kept in the sources. This epsilon then directly controls the
|
||||
energy of the reconstruction error.
|
||||
|
||||
Warning:
|
||||
As in :func:`expectation_maximization`, we recommend converting the
|
||||
mixture `x` to double precision `torch.float64` *before* calling
|
||||
:func:`wiener`.
|
||||
"""
|
||||
if softmask:
|
||||
# if we use softmask, we compute the ratio mask for all targets and
|
||||
# multiply by the mix stft
|
||||
y = (
|
||||
mix_stft[..., None]
|
||||
* (
|
||||
targets_spectrograms
|
||||
/ (eps + torch.sum(targets_spectrograms, dim=-1, keepdim=True).to(mix_stft.dtype))
|
||||
)[..., None, :]
|
||||
)
|
||||
else:
|
||||
# otherwise, we just multiply the targets spectrograms with mix phase
|
||||
# we tacitly assume that we have magnitude estimates.
|
||||
angle = atan2(mix_stft[..., 1], mix_stft[..., 0])[..., None]
|
||||
nb_sources = targets_spectrograms.shape[-1]
|
||||
y = torch.zeros(
|
||||
mix_stft.shape + (nb_sources,), dtype=mix_stft.dtype, device=mix_stft.device
|
||||
)
|
||||
y[..., 0, :] = targets_spectrograms * torch.cos(angle)
|
||||
y[..., 1, :] = targets_spectrograms * torch.sin(angle)
|
||||
|
||||
if residual:
|
||||
# if required, adding an additional target as the mix minus
|
||||
# available targets
|
||||
y = torch.cat([y, mix_stft[..., None] - y.sum(dim=-1, keepdim=True)], dim=-1)
|
||||
|
||||
if iterations == 0:
|
||||
return y
|
||||
|
||||
# we need to refine the estimates. Scales down the estimates for
|
||||
# numerical stability
|
||||
max_abs = torch.max(
|
||||
torch.as_tensor(1.0, dtype=mix_stft.dtype, device=mix_stft.device),
|
||||
torch.sqrt(_norm(mix_stft)).max() / scale_factor,
|
||||
)
|
||||
|
||||
mix_stft = mix_stft / max_abs
|
||||
y = y / max_abs
|
||||
|
||||
# call expectation maximization
|
||||
y = expectation_maximization(y, mix_stft, iterations, eps=eps)[0]
|
||||
|
||||
# scale estimates up again
|
||||
y = y * max_abs
|
||||
return y
|
||||
|
||||
|
||||
def _covariance(y_j):
|
||||
"""
|
||||
Compute the empirical covariance for a source.
|
||||
|
||||
Args:
|
||||
y_j (Tensor): complex stft of the source.
|
||||
[shape=(nb_frames, nb_bins, nb_channels, 2)].
|
||||
|
||||
Returns:
|
||||
Cj (Tensor): [shape=(nb_frames, nb_bins, nb_channels, nb_channels, 2)]
|
||||
just y_j * conj(y_j.T): empirical covariance for each TF bin.
|
||||
"""
|
||||
(nb_frames, nb_bins, nb_channels) = y_j.shape[:-1]
|
||||
Cj = torch.zeros(
|
||||
(nb_frames, nb_bins, nb_channels, nb_channels, 2),
|
||||
dtype=y_j.dtype,
|
||||
device=y_j.device,
|
||||
)
|
||||
indices = torch.cartesian_prod(torch.arange(nb_channels), torch.arange(nb_channels))
|
||||
for index in indices:
|
||||
Cj[:, :, index[0], index[1], :] = _mul_add(
|
||||
y_j[:, :, index[0], :],
|
||||
_conj(y_j[:, :, index[1], :]),
|
||||
Cj[:, :, index[0], index[1], :],
|
||||
)
|
||||
return Cj
|
||||
782
demucs/hdemucs.py
Normal file
782
demucs/hdemucs.py
Normal file
@@ -0,0 +1,782 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
This code contains the spectrogram and Hybrid version of Demucs.
|
||||
"""
|
||||
from copy import deepcopy
|
||||
import math
|
||||
import typing as tp
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from .filtering import wiener
|
||||
from .demucs import DConv, rescale_module
|
||||
from .states import capture_init
|
||||
from .spec import spectro, ispectro
|
||||
|
||||
def pad1d(x: torch.Tensor, paddings: tp.Tuple[int, int], mode: str = 'constant', value: float = 0.):
|
||||
"""Tiny wrapper around F.pad, just to allow for reflect padding on small input.
|
||||
If this is the case, we insert extra 0 padding to the right before the reflection happen."""
|
||||
x0 = x
|
||||
length = x.shape[-1]
|
||||
padding_left, padding_right = paddings
|
||||
if mode == 'reflect':
|
||||
max_pad = max(padding_left, padding_right)
|
||||
if length <= max_pad:
|
||||
extra_pad = max_pad - length + 1
|
||||
extra_pad_right = min(padding_right, extra_pad)
|
||||
extra_pad_left = extra_pad - extra_pad_right
|
||||
paddings = (padding_left - extra_pad_left, padding_right - extra_pad_right)
|
||||
x = F.pad(x, (extra_pad_left, extra_pad_right))
|
||||
out = F.pad(x, paddings, mode, value)
|
||||
assert out.shape[-1] == length + padding_left + padding_right
|
||||
assert (out[..., padding_left: padding_left + length] == x0).all()
|
||||
return out
|
||||
|
||||
class ScaledEmbedding(nn.Module):
|
||||
"""
|
||||
Boost learning rate for embeddings (with `scale`).
|
||||
Also, can make embeddings continuous with `smooth`.
|
||||
"""
|
||||
def __init__(self, num_embeddings: int, embedding_dim: int,
|
||||
scale: float = 10., smooth=False):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
||||
if smooth:
|
||||
weight = torch.cumsum(self.embedding.weight.data, dim=0)
|
||||
# when summing gaussian, overscale raises as sqrt(n), so we nornalize by that.
|
||||
weight = weight / torch.arange(1, num_embeddings + 1).to(weight).sqrt()[:, None]
|
||||
self.embedding.weight.data[:] = weight
|
||||
self.embedding.weight.data /= scale
|
||||
self.scale = scale
|
||||
|
||||
@property
|
||||
def weight(self):
|
||||
return self.embedding.weight * self.scale
|
||||
|
||||
def forward(self, x):
|
||||
out = self.embedding(x) * self.scale
|
||||
return out
|
||||
|
||||
|
||||
class HEncLayer(nn.Module):
|
||||
def __init__(self, chin, chout, kernel_size=8, stride=4, norm_groups=1, empty=False,
|
||||
freq=True, dconv=True, norm=True, context=0, dconv_kw={}, pad=True,
|
||||
rewrite=True):
|
||||
"""Encoder layer. This used both by the time and the frequency branch.
|
||||
|
||||
Args:
|
||||
chin: number of input channels.
|
||||
chout: number of output channels.
|
||||
norm_groups: number of groups for group norm.
|
||||
empty: used to make a layer with just the first conv. this is used
|
||||
before merging the time and freq. branches.
|
||||
freq: this is acting on frequencies.
|
||||
dconv: insert DConv residual branches.
|
||||
norm: use GroupNorm.
|
||||
context: context size for the 1x1 conv.
|
||||
dconv_kw: list of kwargs for the DConv class.
|
||||
pad: pad the input. Padding is done so that the output size is
|
||||
always the input size / stride.
|
||||
rewrite: add 1x1 conv at the end of the layer.
|
||||
"""
|
||||
super().__init__()
|
||||
norm_fn = lambda d: nn.Identity() # noqa
|
||||
if norm:
|
||||
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
||||
if pad:
|
||||
pad = kernel_size // 4
|
||||
else:
|
||||
pad = 0
|
||||
klass = nn.Conv1d
|
||||
self.freq = freq
|
||||
self.kernel_size = kernel_size
|
||||
self.stride = stride
|
||||
self.empty = empty
|
||||
self.norm = norm
|
||||
self.pad = pad
|
||||
if freq:
|
||||
kernel_size = [kernel_size, 1]
|
||||
stride = [stride, 1]
|
||||
pad = [pad, 0]
|
||||
klass = nn.Conv2d
|
||||
self.conv = klass(chin, chout, kernel_size, stride, pad)
|
||||
if self.empty:
|
||||
return
|
||||
self.norm1 = norm_fn(chout)
|
||||
self.rewrite = None
|
||||
if rewrite:
|
||||
self.rewrite = klass(chout, 2 * chout, 1 + 2 * context, 1, context)
|
||||
self.norm2 = norm_fn(2 * chout)
|
||||
|
||||
self.dconv = None
|
||||
if dconv:
|
||||
self.dconv = DConv(chout, **dconv_kw)
|
||||
|
||||
def forward(self, x, inject=None):
|
||||
"""
|
||||
`inject` is used to inject the result from the time branch into the frequency branch,
|
||||
when both have the same stride.
|
||||
"""
|
||||
if not self.freq and x.dim() == 4:
|
||||
B, C, Fr, T = x.shape
|
||||
x = x.view(B, -1, T)
|
||||
|
||||
if not self.freq:
|
||||
le = x.shape[-1]
|
||||
if not le % self.stride == 0:
|
||||
x = F.pad(x, (0, self.stride - (le % self.stride)))
|
||||
y = self.conv(x)
|
||||
if self.empty:
|
||||
return y
|
||||
if inject is not None:
|
||||
assert inject.shape[-1] == y.shape[-1], (inject.shape, y.shape)
|
||||
if inject.dim() == 3 and y.dim() == 4:
|
||||
inject = inject[:, :, None]
|
||||
y = y + inject
|
||||
y = F.gelu(self.norm1(y))
|
||||
if self.dconv:
|
||||
if self.freq:
|
||||
B, C, Fr, T = y.shape
|
||||
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
|
||||
y = self.dconv(y)
|
||||
if self.freq:
|
||||
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
|
||||
if self.rewrite:
|
||||
z = self.norm2(self.rewrite(y))
|
||||
z = F.glu(z, dim=1)
|
||||
else:
|
||||
z = y
|
||||
return z
|
||||
|
||||
|
||||
class MultiWrap(nn.Module):
|
||||
"""
|
||||
Takes one layer and replicate it N times. each replica will act
|
||||
on a frequency band. All is done so that if the N replica have the same weights,
|
||||
then this is exactly equivalent to applying the original module on all frequencies.
|
||||
|
||||
This is a bit over-engineered to avoid edge artifacts when splitting
|
||||
the frequency bands, but it is possible the naive implementation would work as well...
|
||||
"""
|
||||
def __init__(self, layer, split_ratios):
|
||||
"""
|
||||
Args:
|
||||
layer: module to clone, must be either HEncLayer or HDecLayer.
|
||||
split_ratios: list of float indicating which ratio to keep for each band.
|
||||
"""
|
||||
super().__init__()
|
||||
self.split_ratios = split_ratios
|
||||
self.layers = nn.ModuleList()
|
||||
self.conv = isinstance(layer, HEncLayer)
|
||||
assert not layer.norm
|
||||
assert layer.freq
|
||||
assert layer.pad
|
||||
if not self.conv:
|
||||
assert not layer.context_freq
|
||||
for k in range(len(split_ratios) + 1):
|
||||
lay = deepcopy(layer)
|
||||
if self.conv:
|
||||
lay.conv.padding = (0, 0)
|
||||
else:
|
||||
lay.pad = False
|
||||
for m in lay.modules():
|
||||
if hasattr(m, 'reset_parameters'):
|
||||
m.reset_parameters()
|
||||
self.layers.append(lay)
|
||||
|
||||
def forward(self, x, skip=None, length=None):
|
||||
B, C, Fr, T = x.shape
|
||||
|
||||
ratios = list(self.split_ratios) + [1]
|
||||
start = 0
|
||||
outs = []
|
||||
for ratio, layer in zip(ratios, self.layers):
|
||||
if self.conv:
|
||||
pad = layer.kernel_size // 4
|
||||
if ratio == 1:
|
||||
limit = Fr
|
||||
frames = -1
|
||||
else:
|
||||
limit = int(round(Fr * ratio))
|
||||
le = limit - start
|
||||
if start == 0:
|
||||
le += pad
|
||||
frames = round((le - layer.kernel_size) / layer.stride + 1)
|
||||
limit = start + (frames - 1) * layer.stride + layer.kernel_size
|
||||
if start == 0:
|
||||
limit -= pad
|
||||
assert limit - start > 0, (limit, start)
|
||||
assert limit <= Fr, (limit, Fr)
|
||||
y = x[:, :, start:limit, :]
|
||||
if start == 0:
|
||||
y = F.pad(y, (0, 0, pad, 0))
|
||||
if ratio == 1:
|
||||
y = F.pad(y, (0, 0, 0, pad))
|
||||
outs.append(layer(y))
|
||||
start = limit - layer.kernel_size + layer.stride
|
||||
else:
|
||||
if ratio == 1:
|
||||
limit = Fr
|
||||
else:
|
||||
limit = int(round(Fr * ratio))
|
||||
last = layer.last
|
||||
layer.last = True
|
||||
|
||||
y = x[:, :, start:limit]
|
||||
s = skip[:, :, start:limit]
|
||||
out, _ = layer(y, s, None)
|
||||
if outs:
|
||||
outs[-1][:, :, -layer.stride:] += (
|
||||
out[:, :, :layer.stride] - layer.conv_tr.bias.view(1, -1, 1, 1))
|
||||
out = out[:, :, layer.stride:]
|
||||
if ratio == 1:
|
||||
out = out[:, :, :-layer.stride // 2, :]
|
||||
if start == 0:
|
||||
out = out[:, :, layer.stride // 2:, :]
|
||||
outs.append(out)
|
||||
layer.last = last
|
||||
start = limit
|
||||
out = torch.cat(outs, dim=2)
|
||||
if not self.conv and not last:
|
||||
out = F.gelu(out)
|
||||
if self.conv:
|
||||
return out
|
||||
else:
|
||||
return out, None
|
||||
|
||||
|
||||
class HDecLayer(nn.Module):
|
||||
def __init__(self, chin, chout, last=False, kernel_size=8, stride=4, norm_groups=1, empty=False,
|
||||
freq=True, dconv=True, norm=True, context=1, dconv_kw={}, pad=True,
|
||||
context_freq=True, rewrite=True):
|
||||
"""
|
||||
Same as HEncLayer but for decoder. See `HEncLayer` for documentation.
|
||||
"""
|
||||
super().__init__()
|
||||
norm_fn = lambda d: nn.Identity() # noqa
|
||||
if norm:
|
||||
norm_fn = lambda d: nn.GroupNorm(norm_groups, d) # noqa
|
||||
if pad:
|
||||
pad = kernel_size // 4
|
||||
else:
|
||||
pad = 0
|
||||
self.pad = pad
|
||||
self.last = last
|
||||
self.freq = freq
|
||||
self.chin = chin
|
||||
self.empty = empty
|
||||
self.stride = stride
|
||||
self.kernel_size = kernel_size
|
||||
self.norm = norm
|
||||
self.context_freq = context_freq
|
||||
klass = nn.Conv1d
|
||||
klass_tr = nn.ConvTranspose1d
|
||||
if freq:
|
||||
kernel_size = [kernel_size, 1]
|
||||
stride = [stride, 1]
|
||||
klass = nn.Conv2d
|
||||
klass_tr = nn.ConvTranspose2d
|
||||
self.conv_tr = klass_tr(chin, chout, kernel_size, stride)
|
||||
self.norm2 = norm_fn(chout)
|
||||
if self.empty:
|
||||
return
|
||||
self.rewrite = None
|
||||
if rewrite:
|
||||
if context_freq:
|
||||
self.rewrite = klass(chin, 2 * chin, 1 + 2 * context, 1, context)
|
||||
else:
|
||||
self.rewrite = klass(chin, 2 * chin, [1, 1 + 2 * context], 1,
|
||||
[0, context])
|
||||
self.norm1 = norm_fn(2 * chin)
|
||||
|
||||
self.dconv = None
|
||||
if dconv:
|
||||
self.dconv = DConv(chin, **dconv_kw)
|
||||
|
||||
def forward(self, x, skip, length):
|
||||
if self.freq and x.dim() == 3:
|
||||
B, C, T = x.shape
|
||||
x = x.view(B, self.chin, -1, T)
|
||||
|
||||
if not self.empty:
|
||||
x = x + skip
|
||||
|
||||
if self.rewrite:
|
||||
y = F.glu(self.norm1(self.rewrite(x)), dim=1)
|
||||
else:
|
||||
y = x
|
||||
if self.dconv:
|
||||
if self.freq:
|
||||
B, C, Fr, T = y.shape
|
||||
y = y.permute(0, 2, 1, 3).reshape(-1, C, T)
|
||||
y = self.dconv(y)
|
||||
if self.freq:
|
||||
y = y.view(B, Fr, C, T).permute(0, 2, 1, 3)
|
||||
else:
|
||||
y = x
|
||||
assert skip is None
|
||||
z = self.norm2(self.conv_tr(y))
|
||||
if self.freq:
|
||||
if self.pad:
|
||||
z = z[..., self.pad:-self.pad, :]
|
||||
else:
|
||||
z = z[..., self.pad:self.pad + length]
|
||||
assert z.shape[-1] == length, (z.shape[-1], length)
|
||||
if not self.last:
|
||||
z = F.gelu(z)
|
||||
return z, y
|
||||
|
||||
|
||||
class HDemucs(nn.Module):
|
||||
"""
|
||||
Spectrogram and hybrid Demucs model.
|
||||
The spectrogram model has the same structure as Demucs, except the first few layers are over the
|
||||
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
|
||||
Frequency layers can still access information across time steps thanks to the DConv residual.
|
||||
|
||||
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
|
||||
as the frequency branch and then the two are combined. The opposite happens in the decoder.
|
||||
|
||||
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
|
||||
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
|
||||
Open Unmix implementation [Stoter et al. 2019].
|
||||
|
||||
The loss is always on the temporal domain, by backpropagating through the above
|
||||
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
|
||||
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
|
||||
contribution, without changing the one from the waveform, which will lead to worse performance.
|
||||
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
|
||||
CaC on the other hand provides similar performance for hybrid, and works naturally with
|
||||
hybrid models.
|
||||
|
||||
This model also uses frequency embeddings are used to improve efficiency on convolutions
|
||||
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
|
||||
|
||||
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
|
||||
"""
|
||||
@capture_init
|
||||
def __init__(self,
|
||||
sources,
|
||||
# Channels
|
||||
audio_channels=2,
|
||||
channels=48,
|
||||
channels_time=None,
|
||||
growth=2,
|
||||
# STFT
|
||||
nfft=4096,
|
||||
wiener_iters=0,
|
||||
end_iters=0,
|
||||
wiener_residual=False,
|
||||
cac=True,
|
||||
# Main structure
|
||||
depth=6,
|
||||
rewrite=True,
|
||||
hybrid=True,
|
||||
hybrid_old=False,
|
||||
# Frequency branch
|
||||
multi_freqs=None,
|
||||
multi_freqs_depth=2,
|
||||
freq_emb=0.2,
|
||||
emb_scale=10,
|
||||
emb_smooth=True,
|
||||
# Convolutions
|
||||
kernel_size=8,
|
||||
time_stride=2,
|
||||
stride=4,
|
||||
context=1,
|
||||
context_enc=0,
|
||||
# Normalization
|
||||
norm_starts=4,
|
||||
norm_groups=4,
|
||||
# DConv residual branch
|
||||
dconv_mode=1,
|
||||
dconv_depth=2,
|
||||
dconv_comp=4,
|
||||
dconv_attn=4,
|
||||
dconv_lstm=4,
|
||||
dconv_init=1e-4,
|
||||
# Weight init
|
||||
rescale=0.1,
|
||||
# Metadata
|
||||
samplerate=44100,
|
||||
segment=4 * 10):
|
||||
|
||||
"""
|
||||
Args:
|
||||
sources (list[str]): list of source names.
|
||||
audio_channels (int): input/output audio channels.
|
||||
channels (int): initial number of hidden channels.
|
||||
channels_time: if not None, use a different `channels` value for the time branch.
|
||||
growth: increase the number of hidden channels by this factor at each layer.
|
||||
nfft: number of fft bins. Note that changing this require careful computation of
|
||||
various shape parameters and will not work out of the box for hybrid models.
|
||||
wiener_iters: when using Wiener filtering, number of iterations at test time.
|
||||
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
|
||||
wiener_residual: add residual source before wiener filtering.
|
||||
cac: uses complex as channels, i.e. complex numbers are 2 channels each
|
||||
in input and output. no further processing is done before ISTFT.
|
||||
depth (int): number of layers in the encoder and in the decoder.
|
||||
rewrite (bool): add 1x1 convolution to each layer.
|
||||
hybrid (bool): make a hybrid time/frequency domain, otherwise frequency only.
|
||||
hybrid_old: some models trained for MDX had a padding bug. This replicates
|
||||
this bug to avoid retraining them.
|
||||
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
|
||||
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
|
||||
layers will be wrapped.
|
||||
freq_emb: add frequency embedding after the first frequency layer if > 0,
|
||||
the actual value controls the weight of the embedding.
|
||||
emb_scale: equivalent to scaling the embedding learning rate
|
||||
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
|
||||
kernel_size: kernel_size for encoder and decoder layers.
|
||||
stride: stride for encoder and decoder layers.
|
||||
time_stride: stride for the final time layer, after the merge.
|
||||
context: context for 1x1 conv in the decoder.
|
||||
context_enc: context for 1x1 conv in the encoder.
|
||||
norm_starts: layer at which group norm starts being used.
|
||||
decoder layers are numbered in reverse order.
|
||||
norm_groups: number of groups for group norm.
|
||||
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
||||
dconv_depth: depth of residual DConv branch.
|
||||
dconv_comp: compression of DConv branch.
|
||||
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
||||
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
||||
dconv_init: initial scale for the DConv branch LayerScale.
|
||||
rescale: weight recaling trick
|
||||
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.cac = cac
|
||||
self.wiener_residual = wiener_residual
|
||||
self.audio_channels = audio_channels
|
||||
self.sources = sources
|
||||
self.kernel_size = kernel_size
|
||||
self.context = context
|
||||
self.stride = stride
|
||||
self.depth = depth
|
||||
self.channels = channels
|
||||
self.samplerate = samplerate
|
||||
self.segment = segment
|
||||
|
||||
self.nfft = nfft
|
||||
self.hop_length = nfft // 4
|
||||
self.wiener_iters = wiener_iters
|
||||
self.end_iters = end_iters
|
||||
self.freq_emb = None
|
||||
self.hybrid = hybrid
|
||||
self.hybrid_old = hybrid_old
|
||||
if hybrid_old:
|
||||
assert hybrid, "hybrid_old must come with hybrid=True"
|
||||
if hybrid:
|
||||
assert wiener_iters == end_iters
|
||||
|
||||
self.encoder = nn.ModuleList()
|
||||
self.decoder = nn.ModuleList()
|
||||
|
||||
if hybrid:
|
||||
self.tencoder = nn.ModuleList()
|
||||
self.tdecoder = nn.ModuleList()
|
||||
|
||||
chin = audio_channels
|
||||
chin_z = chin # number of channels for the freq branch
|
||||
if self.cac:
|
||||
chin_z *= 2
|
||||
chout = channels_time or channels
|
||||
chout_z = channels
|
||||
freqs = nfft // 2
|
||||
|
||||
for index in range(depth):
|
||||
lstm = index >= dconv_lstm
|
||||
attn = index >= dconv_attn
|
||||
norm = index >= norm_starts
|
||||
freq = freqs > 1
|
||||
stri = stride
|
||||
ker = kernel_size
|
||||
if not freq:
|
||||
assert freqs == 1
|
||||
ker = time_stride * 2
|
||||
stri = time_stride
|
||||
|
||||
pad = True
|
||||
last_freq = False
|
||||
if freq and freqs <= kernel_size:
|
||||
ker = freqs
|
||||
pad = False
|
||||
last_freq = True
|
||||
|
||||
kw = {
|
||||
'kernel_size': ker,
|
||||
'stride': stri,
|
||||
'freq': freq,
|
||||
'pad': pad,
|
||||
'norm': norm,
|
||||
'rewrite': rewrite,
|
||||
'norm_groups': norm_groups,
|
||||
'dconv_kw': {
|
||||
'lstm': lstm,
|
||||
'attn': attn,
|
||||
'depth': dconv_depth,
|
||||
'compress': dconv_comp,
|
||||
'init': dconv_init,
|
||||
'gelu': True,
|
||||
}
|
||||
}
|
||||
kwt = dict(kw)
|
||||
kwt['freq'] = 0
|
||||
kwt['kernel_size'] = kernel_size
|
||||
kwt['stride'] = stride
|
||||
kwt['pad'] = True
|
||||
kw_dec = dict(kw)
|
||||
multi = False
|
||||
if multi_freqs and index < multi_freqs_depth:
|
||||
multi = True
|
||||
kw_dec['context_freq'] = False
|
||||
|
||||
if last_freq:
|
||||
chout_z = max(chout, chout_z)
|
||||
chout = chout_z
|
||||
|
||||
enc = HEncLayer(chin_z, chout_z,
|
||||
dconv=dconv_mode & 1, context=context_enc, **kw)
|
||||
if hybrid and freq:
|
||||
tenc = HEncLayer(chin, chout, dconv=dconv_mode & 1, context=context_enc,
|
||||
empty=last_freq, **kwt)
|
||||
self.tencoder.append(tenc)
|
||||
|
||||
if multi:
|
||||
enc = MultiWrap(enc, multi_freqs)
|
||||
self.encoder.append(enc)
|
||||
if index == 0:
|
||||
chin = self.audio_channels * len(self.sources)
|
||||
chin_z = chin
|
||||
if self.cac:
|
||||
chin_z *= 2
|
||||
dec = HDecLayer(chout_z, chin_z, dconv=dconv_mode & 2,
|
||||
last=index == 0, context=context, **kw_dec)
|
||||
if multi:
|
||||
dec = MultiWrap(dec, multi_freqs)
|
||||
if hybrid and freq:
|
||||
tdec = HDecLayer(chout, chin, dconv=dconv_mode & 2, empty=last_freq,
|
||||
last=index == 0, context=context, **kwt)
|
||||
self.tdecoder.insert(0, tdec)
|
||||
self.decoder.insert(0, dec)
|
||||
|
||||
chin = chout
|
||||
chin_z = chout_z
|
||||
chout = int(growth * chout)
|
||||
chout_z = int(growth * chout_z)
|
||||
if freq:
|
||||
if freqs <= kernel_size:
|
||||
freqs = 1
|
||||
else:
|
||||
freqs //= stride
|
||||
if index == 0 and freq_emb:
|
||||
self.freq_emb = ScaledEmbedding(
|
||||
freqs, chin_z, smooth=emb_smooth, scale=emb_scale)
|
||||
self.freq_emb_scale = freq_emb
|
||||
|
||||
if rescale:
|
||||
rescale_module(self, reference=rescale)
|
||||
|
||||
def _spec(self, x):
|
||||
hl = self.hop_length
|
||||
nfft = self.nfft
|
||||
x0 = x # noqa
|
||||
|
||||
if self.hybrid:
|
||||
# We re-pad the signal in order to keep the property
|
||||
# that the size of the output is exactly the size of the input
|
||||
# divided by the stride (here hop_length), when divisible.
|
||||
# This is achieved by padding by 1/4th of the kernel size (here nfft).
|
||||
# which is not supported by torch.stft.
|
||||
# Having all convolution operations follow this convention allow to easily
|
||||
# align the time and frequency branches later on.
|
||||
assert hl == nfft // 4
|
||||
le = int(math.ceil(x.shape[-1] / hl))
|
||||
pad = hl // 2 * 3
|
||||
if not self.hybrid_old:
|
||||
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode='reflect')
|
||||
else:
|
||||
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]))
|
||||
|
||||
z = spectro(x, nfft, hl)[..., :-1, :]
|
||||
if self.hybrid:
|
||||
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
|
||||
z = z[..., 2:2+le]
|
||||
return z
|
||||
|
||||
def _ispec(self, z, length=None, scale=0):
|
||||
hl = self.hop_length // (4 ** scale)
|
||||
z = F.pad(z, (0, 0, 0, 1))
|
||||
if self.hybrid:
|
||||
z = F.pad(z, (2, 2))
|
||||
pad = hl // 2 * 3
|
||||
if not self.hybrid_old:
|
||||
le = hl * int(math.ceil(length / hl)) + 2 * pad
|
||||
else:
|
||||
le = hl * int(math.ceil(length / hl))
|
||||
x = ispectro(z, hl, length=le)
|
||||
if not self.hybrid_old:
|
||||
x = x[..., pad:pad + length]
|
||||
else:
|
||||
x = x[..., :length]
|
||||
else:
|
||||
x = ispectro(z, hl, length)
|
||||
return x
|
||||
|
||||
def _magnitude(self, z):
|
||||
# return the magnitude of the spectrogram, except when cac is True,
|
||||
# in which case we just move the complex dimension to the channel one.
|
||||
if self.cac:
|
||||
B, C, Fr, T = z.shape
|
||||
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
|
||||
m = m.reshape(B, C * 2, Fr, T)
|
||||
else:
|
||||
m = z.abs()
|
||||
return m
|
||||
|
||||
def _mask(self, z, m):
|
||||
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
|
||||
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
|
||||
niters = self.wiener_iters
|
||||
if self.cac:
|
||||
B, S, C, Fr, T = m.shape
|
||||
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
|
||||
out = torch.view_as_complex(out.contiguous())
|
||||
return out
|
||||
if self.training:
|
||||
niters = self.end_iters
|
||||
if niters < 0:
|
||||
z = z[:, None]
|
||||
return z / (1e-8 + z.abs()) * m
|
||||
else:
|
||||
return self._wiener(m, z, niters)
|
||||
|
||||
def _wiener(self, mag_out, mix_stft, niters):
|
||||
# apply wiener filtering from OpenUnmix.
|
||||
init = mix_stft.dtype
|
||||
wiener_win_len = 300
|
||||
residual = self.wiener_residual
|
||||
|
||||
B, S, C, Fq, T = mag_out.shape
|
||||
mag_out = mag_out.permute(0, 4, 3, 2, 1)
|
||||
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
|
||||
|
||||
outs = []
|
||||
for sample in range(B):
|
||||
pos = 0
|
||||
out = []
|
||||
for pos in range(0, T, wiener_win_len):
|
||||
frame = slice(pos, pos + wiener_win_len)
|
||||
z_out = wiener(
|
||||
mag_out[sample, frame], mix_stft[sample, frame], niters,
|
||||
residual=residual)
|
||||
out.append(z_out.transpose(-1, -2))
|
||||
outs.append(torch.cat(out, dim=0))
|
||||
out = torch.view_as_complex(torch.stack(outs, 0))
|
||||
out = out.permute(0, 4, 3, 2, 1).contiguous()
|
||||
if residual:
|
||||
out = out[:, :-1]
|
||||
assert list(out.shape) == [B, S, C, Fq, T]
|
||||
return out.to(init)
|
||||
|
||||
def forward(self, mix):
|
||||
x = mix
|
||||
length = x.shape[-1]
|
||||
|
||||
z = self._spec(mix)
|
||||
mag = self._magnitude(z)
|
||||
x = mag
|
||||
|
||||
B, C, Fq, T = x.shape
|
||||
|
||||
# unlike previous Demucs, we always normalize because it is easier.
|
||||
mean = x.mean(dim=(1, 2, 3), keepdim=True)
|
||||
std = x.std(dim=(1, 2, 3), keepdim=True)
|
||||
x = (x - mean) / (1e-5 + std)
|
||||
# x will be the freq. branch input.
|
||||
|
||||
if self.hybrid:
|
||||
# Prepare the time branch input.
|
||||
xt = mix
|
||||
meant = xt.mean(dim=(1, 2), keepdim=True)
|
||||
stdt = xt.std(dim=(1, 2), keepdim=True)
|
||||
xt = (xt - meant) / (1e-5 + stdt)
|
||||
|
||||
# okay, this is a giant mess I know...
|
||||
saved = [] # skip connections, freq.
|
||||
saved_t = [] # skip connections, time.
|
||||
lengths = [] # saved lengths to properly remove padding, freq branch.
|
||||
lengths_t = [] # saved lengths for time branch.
|
||||
for idx, encode in enumerate(self.encoder):
|
||||
lengths.append(x.shape[-1])
|
||||
inject = None
|
||||
if self.hybrid and idx < len(self.tencoder):
|
||||
# we have not yet merged branches.
|
||||
lengths_t.append(xt.shape[-1])
|
||||
tenc = self.tencoder[idx]
|
||||
xt = tenc(xt)
|
||||
if not tenc.empty:
|
||||
# save for skip connection
|
||||
saved_t.append(xt)
|
||||
else:
|
||||
# tenc contains just the first conv., so that now time and freq.
|
||||
# branches have the same shape and can be merged.
|
||||
inject = xt
|
||||
x = encode(x, inject)
|
||||
if idx == 0 and self.freq_emb is not None:
|
||||
# add frequency embedding to allow for non equivariant convolutions
|
||||
# over the frequency axis.
|
||||
frs = torch.arange(x.shape[-2], device=x.device)
|
||||
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
|
||||
x = x + self.freq_emb_scale * emb
|
||||
|
||||
saved.append(x)
|
||||
|
||||
x = torch.zeros_like(x)
|
||||
if self.hybrid:
|
||||
xt = torch.zeros_like(x)
|
||||
# initialize everything to zero (signal will go through u-net skips).
|
||||
|
||||
for idx, decode in enumerate(self.decoder):
|
||||
skip = saved.pop(-1)
|
||||
x, pre = decode(x, skip, lengths.pop(-1))
|
||||
# `pre` contains the output just before final transposed convolution,
|
||||
# which is used when the freq. and time branch separate.
|
||||
|
||||
if self.hybrid:
|
||||
offset = self.depth - len(self.tdecoder)
|
||||
if self.hybrid and idx >= offset:
|
||||
tdec = self.tdecoder[idx - offset]
|
||||
length_t = lengths_t.pop(-1)
|
||||
if tdec.empty:
|
||||
assert pre.shape[2] == 1, pre.shape
|
||||
pre = pre[:, :, 0]
|
||||
xt, _ = tdec(pre, None, length_t)
|
||||
else:
|
||||
skip = saved_t.pop(-1)
|
||||
xt, _ = tdec(xt, skip, length_t)
|
||||
|
||||
# Let's make sure we used all stored skip connections.
|
||||
assert len(saved) == 0
|
||||
assert len(lengths_t) == 0
|
||||
assert len(saved_t) == 0
|
||||
|
||||
S = len(self.sources)
|
||||
x = x.view(B, S, -1, Fq, T)
|
||||
x = x * std[:, None] + mean[:, None]
|
||||
|
||||
zout = self._mask(z, x)
|
||||
x = self._ispec(zout, length)
|
||||
|
||||
if self.hybrid:
|
||||
xt = xt.view(B, S, -1, length)
|
||||
xt = xt * stdt[:, None] + meant[:, None]
|
||||
x = xt + x
|
||||
return x
|
||||
|
||||
|
||||
648
demucs/htdemucs.py
Normal file
648
demucs/htdemucs.py
Normal file
@@ -0,0 +1,648 @@
|
||||
# Copyright (c) Meta, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
# First author is Simon Rouard.
|
||||
"""
|
||||
This code contains the spectrogram and Hybrid version of Demucs.
|
||||
"""
|
||||
import math
|
||||
|
||||
from .filtering import wiener
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from fractions import Fraction
|
||||
from einops import rearrange
|
||||
|
||||
from .transformer import CrossTransformerEncoder
|
||||
|
||||
from .demucs import rescale_module
|
||||
from .states import capture_init
|
||||
from .spec import spectro, ispectro
|
||||
from .hdemucs import pad1d, ScaledEmbedding, HEncLayer, MultiWrap, HDecLayer
|
||||
|
||||
|
||||
class HTDemucs(nn.Module):
|
||||
"""
|
||||
Spectrogram and hybrid Demucs model.
|
||||
The spectrogram model has the same structure as Demucs, except the first few layers are over the
|
||||
frequency axis, until there is only 1 frequency, and then it moves to time convolutions.
|
||||
Frequency layers can still access information across time steps thanks to the DConv residual.
|
||||
|
||||
Hybrid model have a parallel time branch. At some layer, the time branch has the same stride
|
||||
as the frequency branch and then the two are combined. The opposite happens in the decoder.
|
||||
|
||||
Models can either use naive iSTFT from masking, Wiener filtering ([Ulhih et al. 2017]),
|
||||
or complex as channels (CaC) [Choi et al. 2020]. Wiener filtering is based on
|
||||
Open Unmix implementation [Stoter et al. 2019].
|
||||
|
||||
The loss is always on the temporal domain, by backpropagating through the above
|
||||
output methods and iSTFT. This allows to define hybrid models nicely. However, this breaks
|
||||
a bit Wiener filtering, as doing more iteration at test time will change the spectrogram
|
||||
contribution, without changing the one from the waveform, which will lead to worse performance.
|
||||
I tried using the residual option in OpenUnmix Wiener implementation, but it didn't improve.
|
||||
CaC on the other hand provides similar performance for hybrid, and works naturally with
|
||||
hybrid models.
|
||||
|
||||
This model also uses frequency embeddings are used to improve efficiency on convolutions
|
||||
over the freq. axis, following [Isik et al. 2020] (https://arxiv.org/pdf/2008.04470.pdf).
|
||||
|
||||
Unlike classic Demucs, there is no resampling here, and normalization is always applied.
|
||||
"""
|
||||
|
||||
@capture_init
|
||||
def __init__(
|
||||
self,
|
||||
sources,
|
||||
# Channels
|
||||
audio_channels=2,
|
||||
channels=48,
|
||||
channels_time=None,
|
||||
growth=2,
|
||||
# STFT
|
||||
nfft=4096,
|
||||
wiener_iters=0,
|
||||
end_iters=0,
|
||||
wiener_residual=False,
|
||||
cac=True,
|
||||
# Main structure
|
||||
depth=4,
|
||||
rewrite=True,
|
||||
# Frequency branch
|
||||
multi_freqs=None,
|
||||
multi_freqs_depth=3,
|
||||
freq_emb=0.2,
|
||||
emb_scale=10,
|
||||
emb_smooth=True,
|
||||
# Convolutions
|
||||
kernel_size=8,
|
||||
time_stride=2,
|
||||
stride=4,
|
||||
context=1,
|
||||
context_enc=0,
|
||||
# Normalization
|
||||
norm_starts=4,
|
||||
norm_groups=4,
|
||||
# DConv residual branch
|
||||
dconv_mode=1,
|
||||
dconv_depth=2,
|
||||
dconv_comp=8,
|
||||
dconv_init=1e-3,
|
||||
# Before the Transformer
|
||||
bottom_channels=0,
|
||||
# Transformer
|
||||
t_layers=5,
|
||||
t_emb="sin",
|
||||
t_hidden_scale=4.0,
|
||||
t_heads=8,
|
||||
t_dropout=0.0,
|
||||
t_max_positions=10000,
|
||||
t_norm_in=True,
|
||||
t_norm_in_group=False,
|
||||
t_group_norm=False,
|
||||
t_norm_first=True,
|
||||
t_norm_out=True,
|
||||
t_max_period=10000.0,
|
||||
t_weight_decay=0.0,
|
||||
t_lr=None,
|
||||
t_layer_scale=True,
|
||||
t_gelu=True,
|
||||
t_weight_pos_embed=1.0,
|
||||
t_sin_random_shift=0,
|
||||
t_cape_mean_normalize=True,
|
||||
t_cape_augment=True,
|
||||
t_cape_glob_loc_scale=[5000.0, 1.0, 1.4],
|
||||
t_sparse_self_attn=False,
|
||||
t_sparse_cross_attn=False,
|
||||
t_mask_type="diag",
|
||||
t_mask_random_seed=42,
|
||||
t_sparse_attn_window=500,
|
||||
t_global_window=100,
|
||||
t_sparsity=0.95,
|
||||
t_auto_sparsity=False,
|
||||
# ------ Particuliar parameters
|
||||
t_cross_first=False,
|
||||
# Weight init
|
||||
rescale=0.1,
|
||||
# Metadata
|
||||
samplerate=44100,
|
||||
segment=10,
|
||||
use_train_segment=True,
|
||||
):
|
||||
"""
|
||||
Args:
|
||||
sources (list[str]): list of source names.
|
||||
audio_channels (int): input/output audio channels.
|
||||
channels (int): initial number of hidden channels.
|
||||
channels_time: if not None, use a different `channels` value for the time branch.
|
||||
growth: increase the number of hidden channels by this factor at each layer.
|
||||
nfft: number of fft bins. Note that changing this require careful computation of
|
||||
various shape parameters and will not work out of the box for hybrid models.
|
||||
wiener_iters: when using Wiener filtering, number of iterations at test time.
|
||||
end_iters: same but at train time. For a hybrid model, must be equal to `wiener_iters`.
|
||||
wiener_residual: add residual source before wiener filtering.
|
||||
cac: uses complex as channels, i.e. complex numbers are 2 channels each
|
||||
in input and output. no further processing is done before ISTFT.
|
||||
depth (int): number of layers in the encoder and in the decoder.
|
||||
rewrite (bool): add 1x1 convolution to each layer.
|
||||
multi_freqs: list of frequency ratios for splitting frequency bands with `MultiWrap`.
|
||||
multi_freqs_depth: how many layers to wrap with `MultiWrap`. Only the outermost
|
||||
layers will be wrapped.
|
||||
freq_emb: add frequency embedding after the first frequency layer if > 0,
|
||||
the actual value controls the weight of the embedding.
|
||||
emb_scale: equivalent to scaling the embedding learning rate
|
||||
emb_smooth: initialize the embedding with a smooth one (with respect to frequencies).
|
||||
kernel_size: kernel_size for encoder and decoder layers.
|
||||
stride: stride for encoder and decoder layers.
|
||||
time_stride: stride for the final time layer, after the merge.
|
||||
context: context for 1x1 conv in the decoder.
|
||||
context_enc: context for 1x1 conv in the encoder.
|
||||
norm_starts: layer at which group norm starts being used.
|
||||
decoder layers are numbered in reverse order.
|
||||
norm_groups: number of groups for group norm.
|
||||
dconv_mode: if 1: dconv in encoder only, 2: decoder only, 3: both.
|
||||
dconv_depth: depth of residual DConv branch.
|
||||
dconv_comp: compression of DConv branch.
|
||||
dconv_attn: adds attention layers in DConv branch starting at this layer.
|
||||
dconv_lstm: adds a LSTM layer in DConv branch starting at this layer.
|
||||
dconv_init: initial scale for the DConv branch LayerScale.
|
||||
bottom_channels: if >0 it adds a linear layer (1x1 Conv) before and after the
|
||||
transformer in order to change the number of channels
|
||||
t_layers: number of layers in each branch (waveform and spec) of the transformer
|
||||
t_emb: "sin", "cape" or "scaled"
|
||||
t_hidden_scale: the hidden scale of the Feedforward parts of the transformer
|
||||
for instance if C = 384 (the number of channels in the transformer) and
|
||||
t_hidden_scale = 4.0 then the intermediate layer of the FFN has dimension
|
||||
384 * 4 = 1536
|
||||
t_heads: number of heads for the transformer
|
||||
t_dropout: dropout in the transformer
|
||||
t_max_positions: max_positions for the "scaled" positional embedding, only
|
||||
useful if t_emb="scaled"
|
||||
t_norm_in: (bool) norm before addinf positional embedding and getting into the
|
||||
transformer layers
|
||||
t_norm_in_group: (bool) if True while t_norm_in=True, the norm is on all the
|
||||
timesteps (GroupNorm with group=1)
|
||||
t_group_norm: (bool) if True, the norms of the Encoder Layers are on all the
|
||||
timesteps (GroupNorm with group=1)
|
||||
t_norm_first: (bool) if True the norm is before the attention and before the FFN
|
||||
t_norm_out: (bool) if True, there is a GroupNorm (group=1) at the end of each layer
|
||||
t_max_period: (float) denominator in the sinusoidal embedding expression
|
||||
t_weight_decay: (float) weight decay for the transformer
|
||||
t_lr: (float) specific learning rate for the transformer
|
||||
t_layer_scale: (bool) Layer Scale for the transformer
|
||||
t_gelu: (bool) activations of the transformer are GeLU if True, ReLU else
|
||||
t_weight_pos_embed: (float) weighting of the positional embedding
|
||||
t_cape_mean_normalize: (bool) if t_emb="cape", normalisation of positional embeddings
|
||||
see: https://arxiv.org/abs/2106.03143
|
||||
t_cape_augment: (bool) if t_emb="cape", must be True during training and False
|
||||
during the inference, see: https://arxiv.org/abs/2106.03143
|
||||
t_cape_glob_loc_scale: (list of 3 floats) if t_emb="cape", CAPE parameters
|
||||
see: https://arxiv.org/abs/2106.03143
|
||||
t_sparse_self_attn: (bool) if True, the self attentions are sparse
|
||||
t_sparse_cross_attn: (bool) if True, the cross-attentions are sparse (don't use it
|
||||
unless you designed really specific masks)
|
||||
t_mask_type: (str) can be "diag", "jmask", "random", "global" or any combination
|
||||
with '_' between: i.e. "diag_jmask_random" (note that this is permutation
|
||||
invariant i.e. "diag_jmask_random" is equivalent to "jmask_random_diag")
|
||||
t_mask_random_seed: (int) if "random" is in t_mask_type, controls the seed
|
||||
that generated the random part of the mask
|
||||
t_sparse_attn_window: (int) if "diag" is in t_mask_type, for a query (i), and
|
||||
a key (j), the mask is True id |i-j|<=t_sparse_attn_window
|
||||
t_global_window: (int) if "global" is in t_mask_type, mask[:t_global_window, :]
|
||||
and mask[:, :t_global_window] will be True
|
||||
t_sparsity: (float) if "random" is in t_mask_type, t_sparsity is the sparsity
|
||||
level of the random part of the mask.
|
||||
t_cross_first: (bool) if True cross attention is the first layer of the
|
||||
transformer (False seems to be better)
|
||||
rescale: weight rescaling trick
|
||||
use_train_segment: (bool) if True, the actual size that is used during the
|
||||
training is used during inference.
|
||||
"""
|
||||
super().__init__()
|
||||
self.cac = cac
|
||||
self.wiener_residual = wiener_residual
|
||||
self.audio_channels = audio_channels
|
||||
self.sources = sources
|
||||
self.kernel_size = kernel_size
|
||||
self.context = context
|
||||
self.stride = stride
|
||||
self.depth = depth
|
||||
self.bottom_channels = bottom_channels
|
||||
self.channels = channels
|
||||
self.samplerate = samplerate
|
||||
self.segment = segment
|
||||
self.use_train_segment = use_train_segment
|
||||
self.nfft = nfft
|
||||
self.hop_length = nfft // 4
|
||||
self.wiener_iters = wiener_iters
|
||||
self.end_iters = end_iters
|
||||
self.freq_emb = None
|
||||
assert wiener_iters == end_iters
|
||||
|
||||
self.encoder = nn.ModuleList()
|
||||
self.decoder = nn.ModuleList()
|
||||
|
||||
self.tencoder = nn.ModuleList()
|
||||
self.tdecoder = nn.ModuleList()
|
||||
|
||||
chin = audio_channels
|
||||
chin_z = chin # number of channels for the freq branch
|
||||
if self.cac:
|
||||
chin_z *= 2
|
||||
chout = channels_time or channels
|
||||
chout_z = channels
|
||||
freqs = nfft // 2
|
||||
|
||||
for index in range(depth):
|
||||
norm = index >= norm_starts
|
||||
freq = freqs > 1
|
||||
stri = stride
|
||||
ker = kernel_size
|
||||
if not freq:
|
||||
assert freqs == 1
|
||||
ker = time_stride * 2
|
||||
stri = time_stride
|
||||
|
||||
pad = True
|
||||
last_freq = False
|
||||
if freq and freqs <= kernel_size:
|
||||
ker = freqs
|
||||
pad = False
|
||||
last_freq = True
|
||||
|
||||
kw = {
|
||||
"kernel_size": ker,
|
||||
"stride": stri,
|
||||
"freq": freq,
|
||||
"pad": pad,
|
||||
"norm": norm,
|
||||
"rewrite": rewrite,
|
||||
"norm_groups": norm_groups,
|
||||
"dconv_kw": {
|
||||
"depth": dconv_depth,
|
||||
"compress": dconv_comp,
|
||||
"init": dconv_init,
|
||||
"gelu": True,
|
||||
},
|
||||
}
|
||||
kwt = dict(kw)
|
||||
kwt["freq"] = 0
|
||||
kwt["kernel_size"] = kernel_size
|
||||
kwt["stride"] = stride
|
||||
kwt["pad"] = True
|
||||
kw_dec = dict(kw)
|
||||
multi = False
|
||||
if multi_freqs and index < multi_freqs_depth:
|
||||
multi = True
|
||||
kw_dec["context_freq"] = False
|
||||
|
||||
if last_freq:
|
||||
chout_z = max(chout, chout_z)
|
||||
chout = chout_z
|
||||
|
||||
enc = HEncLayer(
|
||||
chin_z, chout_z, dconv=dconv_mode & 1, context=context_enc, **kw
|
||||
)
|
||||
if freq:
|
||||
tenc = HEncLayer(
|
||||
chin,
|
||||
chout,
|
||||
dconv=dconv_mode & 1,
|
||||
context=context_enc,
|
||||
empty=last_freq,
|
||||
**kwt
|
||||
)
|
||||
self.tencoder.append(tenc)
|
||||
|
||||
if multi:
|
||||
enc = MultiWrap(enc, multi_freqs)
|
||||
self.encoder.append(enc)
|
||||
if index == 0:
|
||||
chin = self.audio_channels * len(self.sources)
|
||||
chin_z = chin
|
||||
if self.cac:
|
||||
chin_z *= 2
|
||||
dec = HDecLayer(
|
||||
chout_z,
|
||||
chin_z,
|
||||
dconv=dconv_mode & 2,
|
||||
last=index == 0,
|
||||
context=context,
|
||||
**kw_dec
|
||||
)
|
||||
if multi:
|
||||
dec = MultiWrap(dec, multi_freqs)
|
||||
if freq:
|
||||
tdec = HDecLayer(
|
||||
chout,
|
||||
chin,
|
||||
dconv=dconv_mode & 2,
|
||||
empty=last_freq,
|
||||
last=index == 0,
|
||||
context=context,
|
||||
**kwt
|
||||
)
|
||||
self.tdecoder.insert(0, tdec)
|
||||
self.decoder.insert(0, dec)
|
||||
|
||||
chin = chout
|
||||
chin_z = chout_z
|
||||
chout = int(growth * chout)
|
||||
chout_z = int(growth * chout_z)
|
||||
if freq:
|
||||
if freqs <= kernel_size:
|
||||
freqs = 1
|
||||
else:
|
||||
freqs //= stride
|
||||
if index == 0 and freq_emb:
|
||||
self.freq_emb = ScaledEmbedding(
|
||||
freqs, chin_z, smooth=emb_smooth, scale=emb_scale
|
||||
)
|
||||
self.freq_emb_scale = freq_emb
|
||||
|
||||
if rescale:
|
||||
rescale_module(self, reference=rescale)
|
||||
|
||||
transformer_channels = channels * growth ** (depth - 1)
|
||||
if bottom_channels:
|
||||
self.channel_upsampler = nn.Conv1d(transformer_channels, bottom_channels, 1)
|
||||
self.channel_downsampler = nn.Conv1d(
|
||||
bottom_channels, transformer_channels, 1
|
||||
)
|
||||
self.channel_upsampler_t = nn.Conv1d(
|
||||
transformer_channels, bottom_channels, 1
|
||||
)
|
||||
self.channel_downsampler_t = nn.Conv1d(
|
||||
bottom_channels, transformer_channels, 1
|
||||
)
|
||||
|
||||
transformer_channels = bottom_channels
|
||||
|
||||
if t_layers > 0:
|
||||
self.crosstransformer = CrossTransformerEncoder(
|
||||
dim=transformer_channels,
|
||||
emb=t_emb,
|
||||
hidden_scale=t_hidden_scale,
|
||||
num_heads=t_heads,
|
||||
num_layers=t_layers,
|
||||
cross_first=t_cross_first,
|
||||
dropout=t_dropout,
|
||||
max_positions=t_max_positions,
|
||||
norm_in=t_norm_in,
|
||||
norm_in_group=t_norm_in_group,
|
||||
group_norm=t_group_norm,
|
||||
norm_first=t_norm_first,
|
||||
norm_out=t_norm_out,
|
||||
max_period=t_max_period,
|
||||
weight_decay=t_weight_decay,
|
||||
lr=t_lr,
|
||||
layer_scale=t_layer_scale,
|
||||
gelu=t_gelu,
|
||||
sin_random_shift=t_sin_random_shift,
|
||||
weight_pos_embed=t_weight_pos_embed,
|
||||
cape_mean_normalize=t_cape_mean_normalize,
|
||||
cape_augment=t_cape_augment,
|
||||
cape_glob_loc_scale=t_cape_glob_loc_scale,
|
||||
sparse_self_attn=t_sparse_self_attn,
|
||||
sparse_cross_attn=t_sparse_cross_attn,
|
||||
mask_type=t_mask_type,
|
||||
mask_random_seed=t_mask_random_seed,
|
||||
sparse_attn_window=t_sparse_attn_window,
|
||||
global_window=t_global_window,
|
||||
sparsity=t_sparsity,
|
||||
auto_sparsity=t_auto_sparsity,
|
||||
)
|
||||
else:
|
||||
self.crosstransformer = None
|
||||
|
||||
def _spec(self, x):
|
||||
hl = self.hop_length
|
||||
nfft = self.nfft
|
||||
x0 = x # noqa
|
||||
|
||||
# We re-pad the signal in order to keep the property
|
||||
# that the size of the output is exactly the size of the input
|
||||
# divided by the stride (here hop_length), when divisible.
|
||||
# This is achieved by padding by 1/4th of the kernel size (here nfft).
|
||||
# which is not supported by torch.stft.
|
||||
# Having all convolution operations follow this convention allow to easily
|
||||
# align the time and frequency branches later on.
|
||||
assert hl == nfft // 4
|
||||
le = int(math.ceil(x.shape[-1] / hl))
|
||||
pad = hl // 2 * 3
|
||||
x = pad1d(x, (pad, pad + le * hl - x.shape[-1]), mode="reflect")
|
||||
|
||||
z = spectro(x, nfft, hl)[..., :-1, :]
|
||||
assert z.shape[-1] == le + 4, (z.shape, x.shape, le)
|
||||
z = z[..., 2: 2 + le]
|
||||
return z
|
||||
|
||||
def _ispec(self, z, length=None, scale=0):
|
||||
hl = self.hop_length // (4**scale)
|
||||
z = F.pad(z, (0, 0, 0, 1))
|
||||
z = F.pad(z, (2, 2))
|
||||
pad = hl // 2 * 3
|
||||
le = hl * int(math.ceil(length / hl)) + 2 * pad
|
||||
x = ispectro(z, hl, length=le)
|
||||
x = x[..., pad: pad + length]
|
||||
return x
|
||||
|
||||
def _magnitude(self, z):
|
||||
# return the magnitude of the spectrogram, except when cac is True,
|
||||
# in which case we just move the complex dimension to the channel one.
|
||||
if self.cac:
|
||||
B, C, Fr, T = z.shape
|
||||
m = torch.view_as_real(z).permute(0, 1, 4, 2, 3)
|
||||
m = m.reshape(B, C * 2, Fr, T)
|
||||
else:
|
||||
m = z.abs()
|
||||
return m
|
||||
|
||||
def _mask(self, z, m):
|
||||
# Apply masking given the mixture spectrogram `z` and the estimated mask `m`.
|
||||
# If `cac` is True, `m` is actually a full spectrogram and `z` is ignored.
|
||||
niters = self.wiener_iters
|
||||
if self.cac:
|
||||
B, S, C, Fr, T = m.shape
|
||||
out = m.view(B, S, -1, 2, Fr, T).permute(0, 1, 2, 4, 5, 3)
|
||||
out = torch.view_as_complex(out.contiguous())
|
||||
return out
|
||||
if self.training:
|
||||
niters = self.end_iters
|
||||
if niters < 0:
|
||||
z = z[:, None]
|
||||
return z / (1e-8 + z.abs()) * m
|
||||
else:
|
||||
return self._wiener(m, z, niters)
|
||||
|
||||
def _wiener(self, mag_out, mix_stft, niters):
|
||||
# apply wiener filtering from OpenUnmix.
|
||||
init = mix_stft.dtype
|
||||
wiener_win_len = 300
|
||||
residual = self.wiener_residual
|
||||
|
||||
B, S, C, Fq, T = mag_out.shape
|
||||
mag_out = mag_out.permute(0, 4, 3, 2, 1)
|
||||
mix_stft = torch.view_as_real(mix_stft.permute(0, 3, 2, 1))
|
||||
|
||||
outs = []
|
||||
for sample in range(B):
|
||||
pos = 0
|
||||
out = []
|
||||
for pos in range(0, T, wiener_win_len):
|
||||
frame = slice(pos, pos + wiener_win_len)
|
||||
z_out = wiener(
|
||||
mag_out[sample, frame],
|
||||
mix_stft[sample, frame],
|
||||
niters,
|
||||
residual=residual,
|
||||
)
|
||||
out.append(z_out.transpose(-1, -2))
|
||||
outs.append(torch.cat(out, dim=0))
|
||||
out = torch.view_as_complex(torch.stack(outs, 0))
|
||||
out = out.permute(0, 4, 3, 2, 1).contiguous()
|
||||
if residual:
|
||||
out = out[:, :-1]
|
||||
assert list(out.shape) == [B, S, C, Fq, T]
|
||||
return out.to(init)
|
||||
|
||||
def valid_length(self, length: int):
|
||||
"""
|
||||
Return a length that is appropriate for evaluation.
|
||||
In our case, always return the training length, unless
|
||||
it is smaller than the given length, in which case this
|
||||
raises an error.
|
||||
"""
|
||||
if not self.use_train_segment:
|
||||
return length
|
||||
training_length = int(self.segment * self.samplerate)
|
||||
if training_length < length:
|
||||
raise ValueError(
|
||||
f"Given length {length} is longer than "
|
||||
f"training length {training_length}")
|
||||
return training_length
|
||||
|
||||
def forward(self, mix):
|
||||
length = mix.shape[-1]
|
||||
length_pre_pad = None
|
||||
if self.use_train_segment:
|
||||
if self.training:
|
||||
self.segment = Fraction(mix.shape[-1], self.samplerate)
|
||||
else:
|
||||
training_length = int(self.segment * self.samplerate)
|
||||
if mix.shape[-1] < training_length:
|
||||
length_pre_pad = mix.shape[-1]
|
||||
mix = F.pad(mix, (0, training_length - length_pre_pad))
|
||||
z = self._spec(mix)
|
||||
mag = self._magnitude(z)
|
||||
x = mag
|
||||
|
||||
B, C, Fq, T = x.shape
|
||||
|
||||
# unlike previous Demucs, we always normalize because it is easier.
|
||||
mean = x.mean(dim=(1, 2, 3), keepdim=True)
|
||||
std = x.std(dim=(1, 2, 3), keepdim=True)
|
||||
x = (x - mean) / (1e-5 + std)
|
||||
# x will be the freq. branch input.
|
||||
|
||||
# Prepare the time branch input.
|
||||
xt = mix
|
||||
meant = xt.mean(dim=(1, 2), keepdim=True)
|
||||
stdt = xt.std(dim=(1, 2), keepdim=True)
|
||||
xt = (xt - meant) / (1e-5 + stdt)
|
||||
|
||||
# okay, this is a giant mess I know...
|
||||
saved = [] # skip connections, freq.
|
||||
saved_t = [] # skip connections, time.
|
||||
lengths = [] # saved lengths to properly remove padding, freq branch.
|
||||
lengths_t = [] # saved lengths for time branch.
|
||||
for idx, encode in enumerate(self.encoder):
|
||||
lengths.append(x.shape[-1])
|
||||
inject = None
|
||||
if idx < len(self.tencoder):
|
||||
# we have not yet merged branches.
|
||||
lengths_t.append(xt.shape[-1])
|
||||
tenc = self.tencoder[idx]
|
||||
xt = tenc(xt)
|
||||
if not tenc.empty:
|
||||
# save for skip connection
|
||||
saved_t.append(xt)
|
||||
else:
|
||||
# tenc contains just the first conv., so that now time and freq.
|
||||
# branches have the same shape and can be merged.
|
||||
inject = xt
|
||||
x = encode(x, inject)
|
||||
if idx == 0 and self.freq_emb is not None:
|
||||
# add frequency embedding to allow for non equivariant convolutions
|
||||
# over the frequency axis.
|
||||
frs = torch.arange(x.shape[-2], device=x.device)
|
||||
emb = self.freq_emb(frs).t()[None, :, :, None].expand_as(x)
|
||||
x = x + self.freq_emb_scale * emb
|
||||
|
||||
saved.append(x)
|
||||
if self.crosstransformer:
|
||||
if self.bottom_channels:
|
||||
b, c, f, t = x.shape
|
||||
x = rearrange(x, "b c f t-> b c (f t)")
|
||||
x = self.channel_upsampler(x)
|
||||
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
||||
xt = self.channel_upsampler_t(xt)
|
||||
|
||||
x, xt = self.crosstransformer(x, xt)
|
||||
|
||||
if self.bottom_channels:
|
||||
x = rearrange(x, "b c f t-> b c (f t)")
|
||||
x = self.channel_downsampler(x)
|
||||
x = rearrange(x, "b c (f t)-> b c f t", f=f)
|
||||
xt = self.channel_downsampler_t(xt)
|
||||
|
||||
for idx, decode in enumerate(self.decoder):
|
||||
skip = saved.pop(-1)
|
||||
x, pre = decode(x, skip, lengths.pop(-1))
|
||||
# `pre` contains the output just before final transposed convolution,
|
||||
# which is used when the freq. and time branch separate.
|
||||
|
||||
offset = self.depth - len(self.tdecoder)
|
||||
if idx >= offset:
|
||||
tdec = self.tdecoder[idx - offset]
|
||||
length_t = lengths_t.pop(-1)
|
||||
if tdec.empty:
|
||||
assert pre.shape[2] == 1, pre.shape
|
||||
pre = pre[:, :, 0]
|
||||
xt, _ = tdec(pre, None, length_t)
|
||||
else:
|
||||
skip = saved_t.pop(-1)
|
||||
xt, _ = tdec(xt, skip, length_t)
|
||||
|
||||
# Let's make sure we used all stored skip connections.
|
||||
assert len(saved) == 0
|
||||
assert len(lengths_t) == 0
|
||||
assert len(saved_t) == 0
|
||||
|
||||
S = len(self.sources)
|
||||
x = x.view(B, S, -1, Fq, T)
|
||||
x = x * std[:, None] + mean[:, None]
|
||||
|
||||
zout = self._mask(z, x)
|
||||
if self.use_train_segment:
|
||||
if self.training:
|
||||
x = self._ispec(zout, length)
|
||||
else:
|
||||
x = self._ispec(zout, training_length)
|
||||
else:
|
||||
x = self._ispec(zout, length)
|
||||
|
||||
if self.use_train_segment:
|
||||
if self.training:
|
||||
xt = xt.view(B, S, -1, length)
|
||||
else:
|
||||
xt = xt.view(B, S, -1, training_length)
|
||||
else:
|
||||
xt = xt.view(B, S, -1, length)
|
||||
xt = xt * stdt[:, None] + meant[:, None]
|
||||
x = xt + x
|
||||
if length_pre_pad:
|
||||
x = x[..., :length_pre_pad]
|
||||
return x
|
||||
218
demucs/model.py
Normal file
218
demucs/model.py
Normal file
@@ -0,0 +1,218 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import math
|
||||
|
||||
import torch as th
|
||||
from torch import nn
|
||||
|
||||
from .utils import capture_init, center_trim
|
||||
|
||||
|
||||
class BLSTM(nn.Module):
|
||||
def __init__(self, dim, layers=1):
|
||||
super().__init__()
|
||||
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
|
||||
self.linear = nn.Linear(2 * dim, dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(2, 0, 1)
|
||||
x = self.lstm(x)[0]
|
||||
x = self.linear(x)
|
||||
x = x.permute(1, 2, 0)
|
||||
return x
|
||||
|
||||
|
||||
def rescale_conv(conv, reference):
|
||||
std = conv.weight.std().detach()
|
||||
scale = (std / reference)**0.5
|
||||
conv.weight.data /= scale
|
||||
if conv.bias is not None:
|
||||
conv.bias.data /= scale
|
||||
|
||||
|
||||
def rescale_module(module, reference):
|
||||
for sub in module.modules():
|
||||
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)):
|
||||
rescale_conv(sub, reference)
|
||||
|
||||
|
||||
def upsample(x, stride):
|
||||
"""
|
||||
Linear upsampling, the output will be `stride` times longer.
|
||||
"""
|
||||
batch, channels, time = x.size()
|
||||
weight = th.arange(stride, device=x.device, dtype=th.float) / stride
|
||||
x = x.view(batch, channels, time, 1)
|
||||
out = x[..., :-1, :] * (1 - weight) + x[..., 1:, :] * weight
|
||||
return out.reshape(batch, channels, -1)
|
||||
|
||||
|
||||
def downsample(x, stride):
|
||||
"""
|
||||
Downsample x by decimation.
|
||||
"""
|
||||
return x[:, :, ::stride]
|
||||
|
||||
|
||||
class Demucs(nn.Module):
|
||||
@capture_init
|
||||
def __init__(self,
|
||||
sources=4,
|
||||
audio_channels=2,
|
||||
channels=64,
|
||||
depth=6,
|
||||
rewrite=True,
|
||||
glu=True,
|
||||
upsample=False,
|
||||
rescale=0.1,
|
||||
kernel_size=8,
|
||||
stride=4,
|
||||
growth=2.,
|
||||
lstm_layers=2,
|
||||
context=3,
|
||||
samplerate=44100):
|
||||
"""
|
||||
Args:
|
||||
sources (int): number of sources to separate
|
||||
audio_channels (int): stereo or mono
|
||||
channels (int): first convolution channels
|
||||
depth (int): number of encoder/decoder layers
|
||||
rewrite (bool): add 1x1 convolution to each encoder layer
|
||||
and a convolution to each decoder layer.
|
||||
For the decoder layer, `context` gives the kernel size.
|
||||
glu (bool): use glu instead of ReLU
|
||||
upsample (bool): use linear upsampling with convolutions
|
||||
Wave-U-Net style, instead of transposed convolutions
|
||||
rescale (int): rescale initial weights of convolutions
|
||||
to get their standard deviation closer to `rescale`
|
||||
kernel_size (int): kernel size for convolutions
|
||||
stride (int): stride for convolutions
|
||||
growth (float): multiply (resp divide) number of channels by that
|
||||
for each layer of the encoder (resp decoder)
|
||||
lstm_layers (int): number of lstm layers, 0 = no lstm
|
||||
context (int): kernel size of the convolution in the
|
||||
decoder before the transposed convolution. If > 1,
|
||||
will provide some context from neighboring time
|
||||
steps.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
self.audio_channels = audio_channels
|
||||
self.sources = sources
|
||||
self.kernel_size = kernel_size
|
||||
self.context = context
|
||||
self.stride = stride
|
||||
self.depth = depth
|
||||
self.upsample = upsample
|
||||
self.channels = channels
|
||||
self.samplerate = samplerate
|
||||
|
||||
self.encoder = nn.ModuleList()
|
||||
self.decoder = nn.ModuleList()
|
||||
|
||||
self.final = None
|
||||
if upsample:
|
||||
self.final = nn.Conv1d(channels + audio_channels, sources * audio_channels, 1)
|
||||
stride = 1
|
||||
|
||||
if glu:
|
||||
activation = nn.GLU(dim=1)
|
||||
ch_scale = 2
|
||||
else:
|
||||
activation = nn.ReLU()
|
||||
ch_scale = 1
|
||||
in_channels = audio_channels
|
||||
for index in range(depth):
|
||||
encode = []
|
||||
encode += [nn.Conv1d(in_channels, channels, kernel_size, stride), nn.ReLU()]
|
||||
if rewrite:
|
||||
encode += [nn.Conv1d(channels, ch_scale * channels, 1), activation]
|
||||
self.encoder.append(nn.Sequential(*encode))
|
||||
|
||||
decode = []
|
||||
if index > 0:
|
||||
out_channels = in_channels
|
||||
else:
|
||||
if upsample:
|
||||
out_channels = channels
|
||||
else:
|
||||
out_channels = sources * audio_channels
|
||||
if rewrite:
|
||||
decode += [nn.Conv1d(channels, ch_scale * channels, context), activation]
|
||||
if upsample:
|
||||
decode += [
|
||||
nn.Conv1d(channels, out_channels, kernel_size, stride=1),
|
||||
]
|
||||
else:
|
||||
decode += [nn.ConvTranspose1d(channels, out_channels, kernel_size, stride)]
|
||||
if index > 0:
|
||||
decode.append(nn.ReLU())
|
||||
self.decoder.insert(0, nn.Sequential(*decode))
|
||||
in_channels = channels
|
||||
channels = int(growth * channels)
|
||||
|
||||
channels = in_channels
|
||||
|
||||
if lstm_layers:
|
||||
self.lstm = BLSTM(channels, lstm_layers)
|
||||
else:
|
||||
self.lstm = None
|
||||
|
||||
if rescale:
|
||||
rescale_module(self, reference=rescale)
|
||||
|
||||
def valid_length(self, length):
|
||||
"""
|
||||
Return the nearest valid length to use with the model so that
|
||||
there is no time steps left over in a convolutions, e.g. for all
|
||||
layers, size of the input - kernel_size % stride = 0.
|
||||
|
||||
If the mixture has a valid length, the estimated sources
|
||||
will have exactly the same length when context = 1. If context > 1,
|
||||
the two signals can be center trimmed to match.
|
||||
|
||||
For training, extracts should have a valid length.For evaluation
|
||||
on full tracks we recommend passing `pad = True` to :method:`forward`.
|
||||
"""
|
||||
for _ in range(self.depth):
|
||||
if self.upsample:
|
||||
length = math.ceil(length / self.stride) + self.kernel_size - 1
|
||||
else:
|
||||
length = math.ceil((length - self.kernel_size) / self.stride) + 1
|
||||
length = max(1, length)
|
||||
length += self.context - 1
|
||||
for _ in range(self.depth):
|
||||
if self.upsample:
|
||||
length = length * self.stride + self.kernel_size - 1
|
||||
else:
|
||||
length = (length - 1) * self.stride + self.kernel_size
|
||||
|
||||
return int(length)
|
||||
|
||||
def forward(self, mix):
|
||||
x = mix
|
||||
saved = [x]
|
||||
for encode in self.encoder:
|
||||
x = encode(x)
|
||||
saved.append(x)
|
||||
if self.upsample:
|
||||
x = downsample(x, self.stride)
|
||||
if self.lstm:
|
||||
x = self.lstm(x)
|
||||
for decode in self.decoder:
|
||||
if self.upsample:
|
||||
x = upsample(x, stride=self.stride)
|
||||
skip = center_trim(saved.pop(-1), x)
|
||||
x = x + skip
|
||||
x = decode(x)
|
||||
if self.final:
|
||||
skip = center_trim(saved.pop(-1), x)
|
||||
x = th.cat([x, skip], dim=1)
|
||||
x = self.final(x)
|
||||
|
||||
x = x.view(x.size(0), self.sources, self.audio_channels, x.size(-1))
|
||||
return x
|
||||
218
demucs/model_v2.py
Normal file
218
demucs/model_v2.py
Normal file
@@ -0,0 +1,218 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
import math
|
||||
|
||||
import julius
|
||||
from torch import nn
|
||||
from .tasnet_v2 import ConvTasNet
|
||||
|
||||
from .utils import capture_init, center_trim
|
||||
|
||||
|
||||
class BLSTM(nn.Module):
|
||||
def __init__(self, dim, layers=1):
|
||||
super().__init__()
|
||||
self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
|
||||
self.linear = nn.Linear(2 * dim, dim)
|
||||
|
||||
def forward(self, x):
|
||||
x = x.permute(2, 0, 1)
|
||||
x = self.lstm(x)[0]
|
||||
x = self.linear(x)
|
||||
x = x.permute(1, 2, 0)
|
||||
return x
|
||||
|
||||
|
||||
def rescale_conv(conv, reference):
|
||||
std = conv.weight.std().detach()
|
||||
scale = (std / reference)**0.5
|
||||
conv.weight.data /= scale
|
||||
if conv.bias is not None:
|
||||
conv.bias.data /= scale
|
||||
|
||||
|
||||
def rescale_module(module, reference):
|
||||
for sub in module.modules():
|
||||
if isinstance(sub, (nn.Conv1d, nn.ConvTranspose1d)):
|
||||
rescale_conv(sub, reference)
|
||||
|
||||
def auto_load_demucs_model_v2(sources, demucs_model_name):
|
||||
|
||||
if '48' in demucs_model_name:
|
||||
channels=48
|
||||
elif 'unittest' in demucs_model_name:
|
||||
channels=4
|
||||
else:
|
||||
channels=64
|
||||
|
||||
if 'tasnet' in demucs_model_name:
|
||||
init_demucs_model = ConvTasNet(sources, X=10)
|
||||
else:
|
||||
init_demucs_model = Demucs(sources, channels=channels)
|
||||
|
||||
return init_demucs_model
|
||||
|
||||
class Demucs(nn.Module):
|
||||
@capture_init
|
||||
def __init__(self,
|
||||
sources,
|
||||
audio_channels=2,
|
||||
channels=64,
|
||||
depth=6,
|
||||
rewrite=True,
|
||||
glu=True,
|
||||
rescale=0.1,
|
||||
resample=True,
|
||||
kernel_size=8,
|
||||
stride=4,
|
||||
growth=2.,
|
||||
lstm_layers=2,
|
||||
context=3,
|
||||
normalize=False,
|
||||
samplerate=44100,
|
||||
segment_length=4 * 10 * 44100):
|
||||
"""
|
||||
Args:
|
||||
sources (list[str]): list of source names
|
||||
audio_channels (int): stereo or mono
|
||||
channels (int): first convolution channels
|
||||
depth (int): number of encoder/decoder layers
|
||||
rewrite (bool): add 1x1 convolution to each encoder layer
|
||||
and a convolution to each decoder layer.
|
||||
For the decoder layer, `context` gives the kernel size.
|
||||
glu (bool): use glu instead of ReLU
|
||||
resample_input (bool): upsample x2 the input and downsample /2 the output.
|
||||
rescale (int): rescale initial weights of convolutions
|
||||
to get their standard deviation closer to `rescale`
|
||||
kernel_size (int): kernel size for convolutions
|
||||
stride (int): stride for convolutions
|
||||
growth (float): multiply (resp divide) number of channels by that
|
||||
for each layer of the encoder (resp decoder)
|
||||
lstm_layers (int): number of lstm layers, 0 = no lstm
|
||||
context (int): kernel size of the convolution in the
|
||||
decoder before the transposed convolution. If > 1,
|
||||
will provide some context from neighboring time
|
||||
steps.
|
||||
samplerate (int): stored as meta information for easing
|
||||
future evaluations of the model.
|
||||
segment_length (int): stored as meta information for easing
|
||||
future evaluations of the model. Length of the segments on which
|
||||
the model was trained.
|
||||
"""
|
||||
|
||||
super().__init__()
|
||||
self.audio_channels = audio_channels
|
||||
self.sources = sources
|
||||
self.kernel_size = kernel_size
|
||||
self.context = context
|
||||
self.stride = stride
|
||||
self.depth = depth
|
||||
self.resample = resample
|
||||
self.channels = channels
|
||||
self.normalize = normalize
|
||||
self.samplerate = samplerate
|
||||
self.segment_length = segment_length
|
||||
|
||||
self.encoder = nn.ModuleList()
|
||||
self.decoder = nn.ModuleList()
|
||||
|
||||
if glu:
|
||||
activation = nn.GLU(dim=1)
|
||||
ch_scale = 2
|
||||
else:
|
||||
activation = nn.ReLU()
|
||||
ch_scale = 1
|
||||
in_channels = audio_channels
|
||||
for index in range(depth):
|
||||
encode = []
|
||||
encode += [nn.Conv1d(in_channels, channels, kernel_size, stride), nn.ReLU()]
|
||||
if rewrite:
|
||||
encode += [nn.Conv1d(channels, ch_scale * channels, 1), activation]
|
||||
self.encoder.append(nn.Sequential(*encode))
|
||||
|
||||
decode = []
|
||||
if index > 0:
|
||||
out_channels = in_channels
|
||||
else:
|
||||
out_channels = len(self.sources) * audio_channels
|
||||
if rewrite:
|
||||
decode += [nn.Conv1d(channels, ch_scale * channels, context), activation]
|
||||
decode += [nn.ConvTranspose1d(channels, out_channels, kernel_size, stride)]
|
||||
if index > 0:
|
||||
decode.append(nn.ReLU())
|
||||
self.decoder.insert(0, nn.Sequential(*decode))
|
||||
in_channels = channels
|
||||
channels = int(growth * channels)
|
||||
|
||||
channels = in_channels
|
||||
|
||||
if lstm_layers:
|
||||
self.lstm = BLSTM(channels, lstm_layers)
|
||||
else:
|
||||
self.lstm = None
|
||||
|
||||
if rescale:
|
||||
rescale_module(self, reference=rescale)
|
||||
|
||||
def valid_length(self, length):
|
||||
"""
|
||||
Return the nearest valid length to use with the model so that
|
||||
there is no time steps left over in a convolutions, e.g. for all
|
||||
layers, size of the input - kernel_size % stride = 0.
|
||||
|
||||
If the mixture has a valid length, the estimated sources
|
||||
will have exactly the same length when context = 1. If context > 1,
|
||||
the two signals can be center trimmed to match.
|
||||
|
||||
For training, extracts should have a valid length.For evaluation
|
||||
on full tracks we recommend passing `pad = True` to :method:`forward`.
|
||||
"""
|
||||
if self.resample:
|
||||
length *= 2
|
||||
for _ in range(self.depth):
|
||||
length = math.ceil((length - self.kernel_size) / self.stride) + 1
|
||||
length = max(1, length)
|
||||
length += self.context - 1
|
||||
for _ in range(self.depth):
|
||||
length = (length - 1) * self.stride + self.kernel_size
|
||||
|
||||
if self.resample:
|
||||
length = math.ceil(length / 2)
|
||||
return int(length)
|
||||
|
||||
def forward(self, mix):
|
||||
x = mix
|
||||
|
||||
if self.normalize:
|
||||
mono = mix.mean(dim=1, keepdim=True)
|
||||
mean = mono.mean(dim=-1, keepdim=True)
|
||||
std = mono.std(dim=-1, keepdim=True)
|
||||
else:
|
||||
mean = 0
|
||||
std = 1
|
||||
|
||||
x = (x - mean) / (1e-5 + std)
|
||||
|
||||
if self.resample:
|
||||
x = julius.resample_frac(x, 1, 2)
|
||||
|
||||
saved = []
|
||||
for encode in self.encoder:
|
||||
x = encode(x)
|
||||
saved.append(x)
|
||||
if self.lstm:
|
||||
x = self.lstm(x)
|
||||
for decode in self.decoder:
|
||||
skip = center_trim(saved.pop(-1), x)
|
||||
x = x + skip
|
||||
x = decode(x)
|
||||
|
||||
if self.resample:
|
||||
x = julius.resample_frac(x, 2, 1)
|
||||
x = x * std + mean
|
||||
x = x.view(x.size(0), len(self.sources), self.audio_channels, x.size(-1))
|
||||
return x
|
||||
180
demucs/pretrained.py
Normal file
180
demucs/pretrained.py
Normal file
@@ -0,0 +1,180 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Loading pretrained models.
|
||||
"""
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
import typing as tp
|
||||
|
||||
from dora.log import fatal
|
||||
|
||||
import logging
|
||||
|
||||
from diffq import DiffQuantizer
|
||||
import torch.hub
|
||||
|
||||
from .model import Demucs
|
||||
from .tasnet_v2 import ConvTasNet
|
||||
from .utils import set_state
|
||||
|
||||
from .hdemucs import HDemucs
|
||||
from .repo import RemoteRepo, LocalRepo, ModelOnlyRepo, BagOnlyRepo, AnyModelRepo, ModelLoadingError # noqa
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
ROOT_URL = "https://dl.fbaipublicfiles.com/demucs/mdx_final/"
|
||||
REMOTE_ROOT = Path(__file__).parent / 'remote'
|
||||
|
||||
SOURCES = ["drums", "bass", "other", "vocals"]
|
||||
|
||||
|
||||
def demucs_unittest():
|
||||
model = HDemucs(channels=4, sources=SOURCES)
|
||||
return model
|
||||
|
||||
|
||||
def add_model_flags(parser):
|
||||
group = parser.add_mutually_exclusive_group(required=False)
|
||||
group.add_argument("-s", "--sig", help="Locally trained XP signature.")
|
||||
group.add_argument("-n", "--name", default="mdx_extra_q",
|
||||
help="Pretrained model name or signature. Default is mdx_extra_q.")
|
||||
parser.add_argument("--repo", type=Path,
|
||||
help="Folder containing all pre-trained models for use with -n.")
|
||||
|
||||
|
||||
def _parse_remote_files(remote_file_list) -> tp.Dict[str, str]:
|
||||
root: str = ''
|
||||
models: tp.Dict[str, str] = {}
|
||||
for line in remote_file_list.read_text().split('\n'):
|
||||
line = line.strip()
|
||||
if line.startswith('#'):
|
||||
continue
|
||||
elif line.startswith('root:'):
|
||||
root = line.split(':', 1)[1].strip()
|
||||
else:
|
||||
sig = line.split('-', 1)[0]
|
||||
assert sig not in models
|
||||
models[sig] = ROOT_URL + root + line
|
||||
return models
|
||||
|
||||
def get_model(name: str,
|
||||
repo: tp.Optional[Path] = None):
|
||||
"""`name` must be a bag of models name or a pretrained signature
|
||||
from the remote AWS model repo or the specified local repo if `repo` is not None.
|
||||
"""
|
||||
if name == 'demucs_unittest':
|
||||
return demucs_unittest()
|
||||
model_repo: ModelOnlyRepo
|
||||
if repo is None:
|
||||
models = _parse_remote_files(REMOTE_ROOT / 'files.txt')
|
||||
model_repo = RemoteRepo(models)
|
||||
bag_repo = BagOnlyRepo(REMOTE_ROOT, model_repo)
|
||||
else:
|
||||
if not repo.is_dir():
|
||||
fatal(f"{repo} must exist and be a directory.")
|
||||
model_repo = LocalRepo(repo)
|
||||
bag_repo = BagOnlyRepo(repo, model_repo)
|
||||
any_repo = AnyModelRepo(model_repo, bag_repo)
|
||||
model = any_repo.get_model(name)
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
def get_model_from_args(args):
|
||||
"""
|
||||
Load local model package or pre-trained model.
|
||||
"""
|
||||
return get_model(name=args.name, repo=args.repo)
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
ROOT = "https://dl.fbaipublicfiles.com/demucs/v3.0/"
|
||||
|
||||
PRETRAINED_MODELS = {
|
||||
'demucs': 'e07c671f',
|
||||
'demucs48_hq': '28a1282c',
|
||||
'demucs_extra': '3646af93',
|
||||
'demucs_quantized': '07afea75',
|
||||
'tasnet': 'beb46fac',
|
||||
'tasnet_extra': 'df3777b2',
|
||||
'demucs_unittest': '09ebc15f',
|
||||
}
|
||||
|
||||
SOURCES = ["drums", "bass", "other", "vocals"]
|
||||
|
||||
|
||||
def get_url(name):
|
||||
sig = PRETRAINED_MODELS[name]
|
||||
return ROOT + name + "-" + sig[:8] + ".th"
|
||||
|
||||
def is_pretrained(name):
|
||||
return name in PRETRAINED_MODELS
|
||||
|
||||
|
||||
def load_pretrained(name):
|
||||
if name == "demucs":
|
||||
return demucs(pretrained=True)
|
||||
elif name == "demucs48_hq":
|
||||
return demucs(pretrained=True, hq=True, channels=48)
|
||||
elif name == "demucs_extra":
|
||||
return demucs(pretrained=True, extra=True)
|
||||
elif name == "demucs_quantized":
|
||||
return demucs(pretrained=True, quantized=True)
|
||||
elif name == "demucs_unittest":
|
||||
return demucs_unittest(pretrained=True)
|
||||
elif name == "tasnet":
|
||||
return tasnet(pretrained=True)
|
||||
elif name == "tasnet_extra":
|
||||
return tasnet(pretrained=True, extra=True)
|
||||
else:
|
||||
raise ValueError(f"Invalid pretrained name {name}")
|
||||
|
||||
|
||||
def _load_state(name, model, quantizer=None):
|
||||
url = get_url(name)
|
||||
state = torch.hub.load_state_dict_from_url(url, map_location='cpu', check_hash=True)
|
||||
set_state(model, quantizer, state)
|
||||
if quantizer:
|
||||
quantizer.detach()
|
||||
|
||||
|
||||
def demucs_unittest(pretrained=True):
|
||||
model = Demucs(channels=4, sources=SOURCES)
|
||||
if pretrained:
|
||||
_load_state('demucs_unittest', model)
|
||||
return model
|
||||
|
||||
|
||||
def demucs(pretrained=True, extra=False, quantized=False, hq=False, channels=64):
|
||||
if not pretrained and (extra or quantized or hq):
|
||||
raise ValueError("if extra or quantized is True, pretrained must be True.")
|
||||
model = Demucs(sources=SOURCES, channels=channels)
|
||||
if pretrained:
|
||||
name = 'demucs'
|
||||
if channels != 64:
|
||||
name += str(channels)
|
||||
quantizer = None
|
||||
if sum([extra, quantized, hq]) > 1:
|
||||
raise ValueError("Only one of extra, quantized, hq, can be True.")
|
||||
if quantized:
|
||||
quantizer = DiffQuantizer(model, group_size=8, min_size=1)
|
||||
name += '_quantized'
|
||||
if extra:
|
||||
name += '_extra'
|
||||
if hq:
|
||||
name += '_hq'
|
||||
_load_state(name, model, quantizer)
|
||||
return model
|
||||
|
||||
|
||||
def tasnet(pretrained=True, extra=False):
|
||||
if not pretrained and extra:
|
||||
raise ValueError("if extra is True, pretrained must be True.")
|
||||
model = ConvTasNet(X=10, sources=SOURCES)
|
||||
if pretrained:
|
||||
name = 'tasnet'
|
||||
if extra:
|
||||
name = 'tasnet_extra'
|
||||
_load_state(name, model)
|
||||
return model
|
||||
148
demucs/repo.py
Normal file
148
demucs/repo.py
Normal file
@@ -0,0 +1,148 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Represents a model repository, including pre-trained models and bags of models.
|
||||
A repo can either be the main remote repository stored in AWS, or a local repository
|
||||
with your own models.
|
||||
"""
|
||||
|
||||
from hashlib import sha256
|
||||
from pathlib import Path
|
||||
import typing as tp
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
from .apply import BagOfModels, Model
|
||||
from .states import load_model
|
||||
|
||||
|
||||
AnyModel = tp.Union[Model, BagOfModels]
|
||||
|
||||
|
||||
class ModelLoadingError(RuntimeError):
|
||||
pass
|
||||
|
||||
|
||||
def check_checksum(path: Path, checksum: str):
|
||||
sha = sha256()
|
||||
with open(path, 'rb') as file:
|
||||
while True:
|
||||
buf = file.read(2**20)
|
||||
if not buf:
|
||||
break
|
||||
sha.update(buf)
|
||||
actual_checksum = sha.hexdigest()[:len(checksum)]
|
||||
if actual_checksum != checksum:
|
||||
raise ModelLoadingError(f'Invalid checksum for file {path}, '
|
||||
f'expected {checksum} but got {actual_checksum}')
|
||||
|
||||
class ModelOnlyRepo:
|
||||
"""Base class for all model only repos.
|
||||
"""
|
||||
def has_model(self, sig: str) -> bool:
|
||||
raise NotImplementedError()
|
||||
|
||||
def get_model(self, sig: str) -> Model:
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
class RemoteRepo(ModelOnlyRepo):
|
||||
def __init__(self, models: tp.Dict[str, str]):
|
||||
self._models = models
|
||||
|
||||
def has_model(self, sig: str) -> bool:
|
||||
return sig in self._models
|
||||
|
||||
def get_model(self, sig: str) -> Model:
|
||||
try:
|
||||
url = self._models[sig]
|
||||
except KeyError:
|
||||
raise ModelLoadingError(f'Could not find a pre-trained model with signature {sig}.')
|
||||
pkg = torch.hub.load_state_dict_from_url(url, map_location='cpu', check_hash=True)
|
||||
return load_model(pkg)
|
||||
|
||||
|
||||
class LocalRepo(ModelOnlyRepo):
|
||||
def __init__(self, root: Path):
|
||||
self.root = root
|
||||
self.scan()
|
||||
|
||||
def scan(self):
|
||||
self._models = {}
|
||||
self._checksums = {}
|
||||
for file in self.root.iterdir():
|
||||
if file.suffix == '.th':
|
||||
if '-' in file.stem:
|
||||
xp_sig, checksum = file.stem.split('-')
|
||||
self._checksums[xp_sig] = checksum
|
||||
else:
|
||||
xp_sig = file.stem
|
||||
if xp_sig in self._models:
|
||||
print('Whats xp? ', xp_sig)
|
||||
raise ModelLoadingError(
|
||||
f'Duplicate pre-trained model exist for signature {xp_sig}. '
|
||||
'Please delete all but one.')
|
||||
self._models[xp_sig] = file
|
||||
|
||||
def has_model(self, sig: str) -> bool:
|
||||
return sig in self._models
|
||||
|
||||
def get_model(self, sig: str) -> Model:
|
||||
try:
|
||||
file = self._models[sig]
|
||||
except KeyError:
|
||||
raise ModelLoadingError(f'Could not find pre-trained model with signature {sig}.')
|
||||
if sig in self._checksums:
|
||||
check_checksum(file, self._checksums[sig])
|
||||
return load_model(file)
|
||||
|
||||
|
||||
class BagOnlyRepo:
|
||||
"""Handles only YAML files containing bag of models, leaving the actual
|
||||
model loading to some Repo.
|
||||
"""
|
||||
def __init__(self, root: Path, model_repo: ModelOnlyRepo):
|
||||
self.root = root
|
||||
self.model_repo = model_repo
|
||||
self.scan()
|
||||
|
||||
def scan(self):
|
||||
self._bags = {}
|
||||
for file in self.root.iterdir():
|
||||
if file.suffix == '.yaml':
|
||||
self._bags[file.stem] = file
|
||||
|
||||
def has_model(self, name: str) -> bool:
|
||||
return name in self._bags
|
||||
|
||||
def get_model(self, name: str) -> BagOfModels:
|
||||
try:
|
||||
yaml_file = self._bags[name]
|
||||
except KeyError:
|
||||
raise ModelLoadingError(f'{name} is neither a single pre-trained model or '
|
||||
'a bag of models.')
|
||||
bag = yaml.safe_load(open(yaml_file))
|
||||
signatures = bag['models']
|
||||
models = [self.model_repo.get_model(sig) for sig in signatures]
|
||||
weights = bag.get('weights')
|
||||
segment = bag.get('segment')
|
||||
return BagOfModels(models, weights, segment)
|
||||
|
||||
|
||||
class AnyModelRepo:
|
||||
def __init__(self, model_repo: ModelOnlyRepo, bag_repo: BagOnlyRepo):
|
||||
self.model_repo = model_repo
|
||||
self.bag_repo = bag_repo
|
||||
|
||||
def has_model(self, name_or_sig: str) -> bool:
|
||||
return self.model_repo.has_model(name_or_sig) or self.bag_repo.has_model(name_or_sig)
|
||||
|
||||
def get_model(self, name_or_sig: str) -> AnyModel:
|
||||
print('name_or_sig: ', name_or_sig)
|
||||
if self.model_repo.has_model(name_or_sig):
|
||||
return self.model_repo.get_model(name_or_sig)
|
||||
else:
|
||||
return self.bag_repo.get_model(name_or_sig)
|
||||
41
demucs/spec.py
Normal file
41
demucs/spec.py
Normal file
@@ -0,0 +1,41 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""Conveniance wrapper to perform STFT and iSTFT"""
|
||||
|
||||
import torch as th
|
||||
|
||||
|
||||
def spectro(x, n_fft=512, hop_length=None, pad=0):
|
||||
*other, length = x.shape
|
||||
x = x.reshape(-1, length)
|
||||
z = th.stft(x,
|
||||
n_fft * (1 + pad),
|
||||
hop_length or n_fft // 4,
|
||||
window=th.hann_window(n_fft).to(x),
|
||||
win_length=n_fft,
|
||||
normalized=True,
|
||||
center=True,
|
||||
return_complex=True,
|
||||
pad_mode='reflect')
|
||||
_, freqs, frame = z.shape
|
||||
return z.view(*other, freqs, frame)
|
||||
|
||||
|
||||
def ispectro(z, hop_length=None, length=None, pad=0):
|
||||
*other, freqs, frames = z.shape
|
||||
n_fft = 2 * freqs - 2
|
||||
z = z.view(-1, freqs, frames)
|
||||
win_length = n_fft // (1 + pad)
|
||||
x = th.istft(z,
|
||||
n_fft,
|
||||
hop_length,
|
||||
window=th.hann_window(win_length).to(z.real),
|
||||
win_length=win_length,
|
||||
normalized=True,
|
||||
length=length,
|
||||
center=True)
|
||||
_, length = x.shape
|
||||
return x.view(*other, length)
|
||||
148
demucs/states.py
Normal file
148
demucs/states.py
Normal file
@@ -0,0 +1,148 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
"""
|
||||
Utilities to save and load models.
|
||||
"""
|
||||
from contextlib import contextmanager
|
||||
|
||||
import functools
|
||||
import hashlib
|
||||
import inspect
|
||||
import io
|
||||
from pathlib import Path
|
||||
import warnings
|
||||
|
||||
from omegaconf import OmegaConf
|
||||
from diffq import DiffQuantizer, UniformQuantizer, restore_quantized_state
|
||||
import torch
|
||||
|
||||
|
||||
def get_quantizer(model, args, optimizer=None):
|
||||
"""Return the quantizer given the XP quantization args."""
|
||||
quantizer = None
|
||||
if args.diffq:
|
||||
quantizer = DiffQuantizer(
|
||||
model, min_size=args.min_size, group_size=args.group_size)
|
||||
if optimizer is not None:
|
||||
quantizer.setup_optimizer(optimizer)
|
||||
elif args.qat:
|
||||
quantizer = UniformQuantizer(
|
||||
model, bits=args.qat, min_size=args.min_size)
|
||||
return quantizer
|
||||
|
||||
|
||||
def load_model(path_or_package, strict=False):
|
||||
"""Load a model from the given serialized model, either given as a dict (already loaded)
|
||||
or a path to a file on disk."""
|
||||
if isinstance(path_or_package, dict):
|
||||
package = path_or_package
|
||||
elif isinstance(path_or_package, (str, Path)):
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
path = path_or_package
|
||||
package = torch.load(path, 'cpu')
|
||||
else:
|
||||
raise ValueError(f"Invalid type for {path_or_package}.")
|
||||
|
||||
klass = package["klass"]
|
||||
args = package["args"]
|
||||
kwargs = package["kwargs"]
|
||||
|
||||
if strict:
|
||||
model = klass(*args, **kwargs)
|
||||
else:
|
||||
sig = inspect.signature(klass)
|
||||
for key in list(kwargs):
|
||||
if key not in sig.parameters:
|
||||
warnings.warn("Dropping inexistant parameter " + key)
|
||||
del kwargs[key]
|
||||
model = klass(*args, **kwargs)
|
||||
|
||||
state = package["state"]
|
||||
|
||||
set_state(model, state)
|
||||
return model
|
||||
|
||||
|
||||
def get_state(model, quantizer, half=False):
|
||||
"""Get the state from a model, potentially with quantization applied.
|
||||
If `half` is True, model are stored as half precision, which shouldn't impact performance
|
||||
but half the state size."""
|
||||
if quantizer is None:
|
||||
dtype = torch.half if half else None
|
||||
state = {k: p.data.to(device='cpu', dtype=dtype) for k, p in model.state_dict().items()}
|
||||
else:
|
||||
state = quantizer.get_quantized_state()
|
||||
state['__quantized'] = True
|
||||
return state
|
||||
|
||||
|
||||
def set_state(model, state, quantizer=None):
|
||||
"""Set the state on a given model."""
|
||||
if state.get('__quantized'):
|
||||
if quantizer is not None:
|
||||
quantizer.restore_quantized_state(model, state['quantized'])
|
||||
else:
|
||||
restore_quantized_state(model, state)
|
||||
else:
|
||||
model.load_state_dict(state)
|
||||
return state
|
||||
|
||||
|
||||
def save_with_checksum(content, path):
|
||||
"""Save the given value on disk, along with a sha256 hash.
|
||||
Should be used with the output of either `serialize_model` or `get_state`."""
|
||||
buf = io.BytesIO()
|
||||
torch.save(content, buf)
|
||||
sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8]
|
||||
|
||||
path = path.parent / (path.stem + "-" + sig + path.suffix)
|
||||
path.write_bytes(buf.getvalue())
|
||||
|
||||
|
||||
def serialize_model(model, training_args, quantizer=None, half=True):
|
||||
args, kwargs = model._init_args_kwargs
|
||||
klass = model.__class__
|
||||
|
||||
state = get_state(model, quantizer, half)
|
||||
return {
|
||||
'klass': klass,
|
||||
'args': args,
|
||||
'kwargs': kwargs,
|
||||
'state': state,
|
||||
'training_args': OmegaConf.to_container(training_args, resolve=True),
|
||||
}
|
||||
|
||||
|
||||
def copy_state(state):
|
||||
return {k: v.cpu().clone() for k, v in state.items()}
|
||||
|
||||
|
||||
@contextmanager
|
||||
def swap_state(model, state):
|
||||
"""
|
||||
Context manager that swaps the state of a model, e.g:
|
||||
|
||||
# model is in old state
|
||||
with swap_state(model, new_state):
|
||||
# model in new state
|
||||
# model back to old state
|
||||
"""
|
||||
old_state = copy_state(model.state_dict())
|
||||
model.load_state_dict(state, strict=False)
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
model.load_state_dict(old_state)
|
||||
|
||||
|
||||
def capture_init(init):
|
||||
@functools.wraps(init)
|
||||
def __init__(self, *args, **kwargs):
|
||||
self._init_args_kwargs = (args, kwargs)
|
||||
init(self, *args, **kwargs)
|
||||
|
||||
return __init__
|
||||
447
demucs/tasnet.py
Normal file
447
demucs/tasnet.py
Normal file
@@ -0,0 +1,447 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
# Created on 2018/12
|
||||
# Author: Kaituo XU
|
||||
# Modified on 2019/11 by Alexandre Defossez, added support for multiple output channels
|
||||
# Here is the original license:
|
||||
# The MIT License (MIT)
|
||||
#
|
||||
# Copyright (c) 2018 Kaituo XU
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .utils import capture_init
|
||||
|
||||
EPS = 1e-8
|
||||
|
||||
|
||||
def overlap_and_add(signal, frame_step):
|
||||
outer_dimensions = signal.size()[:-2]
|
||||
frames, frame_length = signal.size()[-2:]
|
||||
|
||||
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor
|
||||
subframe_step = frame_step // subframe_length
|
||||
subframes_per_frame = frame_length // subframe_length
|
||||
output_size = frame_step * (frames - 1) + frame_length
|
||||
output_subframes = output_size // subframe_length
|
||||
|
||||
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
|
||||
|
||||
frame = torch.arange(0, output_subframes,
|
||||
device=signal.device).unfold(0, subframes_per_frame, subframe_step)
|
||||
frame = frame.long() # signal may in GPU or CPU
|
||||
frame = frame.contiguous().view(-1)
|
||||
|
||||
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
|
||||
result.index_add_(-2, frame, subframe_signal)
|
||||
result = result.view(*outer_dimensions, -1)
|
||||
return result
|
||||
|
||||
|
||||
class ConvTasNet(nn.Module):
|
||||
@capture_init
|
||||
def __init__(self,
|
||||
N=256,
|
||||
L=20,
|
||||
B=256,
|
||||
H=512,
|
||||
P=3,
|
||||
X=8,
|
||||
R=4,
|
||||
C=4,
|
||||
audio_channels=1,
|
||||
samplerate=44100,
|
||||
norm_type="gLN",
|
||||
causal=False,
|
||||
mask_nonlinear='relu'):
|
||||
"""
|
||||
Args:
|
||||
N: Number of filters in autoencoder
|
||||
L: Length of the filters (in samples)
|
||||
B: Number of channels in bottleneck 1 × 1-conv block
|
||||
H: Number of channels in convolutional blocks
|
||||
P: Kernel size in convolutional blocks
|
||||
X: Number of convolutional blocks in each repeat
|
||||
R: Number of repeats
|
||||
C: Number of speakers
|
||||
norm_type: BN, gLN, cLN
|
||||
causal: causal or non-causal
|
||||
mask_nonlinear: use which non-linear function to generate mask
|
||||
"""
|
||||
super(ConvTasNet, self).__init__()
|
||||
# Hyper-parameter
|
||||
self.N, self.L, self.B, self.H, self.P, self.X, self.R, self.C = N, L, B, H, P, X, R, C
|
||||
self.norm_type = norm_type
|
||||
self.causal = causal
|
||||
self.mask_nonlinear = mask_nonlinear
|
||||
self.audio_channels = audio_channels
|
||||
self.samplerate = samplerate
|
||||
# Components
|
||||
self.encoder = Encoder(L, N, audio_channels)
|
||||
self.separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type, causal, mask_nonlinear)
|
||||
self.decoder = Decoder(N, L, audio_channels)
|
||||
# init
|
||||
for p in self.parameters():
|
||||
if p.dim() > 1:
|
||||
nn.init.xavier_normal_(p)
|
||||
|
||||
def valid_length(self, length):
|
||||
return length
|
||||
|
||||
def forward(self, mixture):
|
||||
"""
|
||||
Args:
|
||||
mixture: [M, T], M is batch size, T is #samples
|
||||
Returns:
|
||||
est_source: [M, C, T]
|
||||
"""
|
||||
mixture_w = self.encoder(mixture)
|
||||
est_mask = self.separator(mixture_w)
|
||||
est_source = self.decoder(mixture_w, est_mask)
|
||||
|
||||
# T changed after conv1d in encoder, fix it here
|
||||
T_origin = mixture.size(-1)
|
||||
T_conv = est_source.size(-1)
|
||||
est_source = F.pad(est_source, (0, T_origin - T_conv))
|
||||
return est_source
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
"""Estimation of the nonnegative mixture weight by a 1-D conv layer.
|
||||
"""
|
||||
def __init__(self, L, N, audio_channels):
|
||||
super(Encoder, self).__init__()
|
||||
# Hyper-parameter
|
||||
self.L, self.N = L, N
|
||||
# Components
|
||||
# 50% overlap
|
||||
self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride=L // 2, bias=False)
|
||||
|
||||
def forward(self, mixture):
|
||||
"""
|
||||
Args:
|
||||
mixture: [M, T], M is batch size, T is #samples
|
||||
Returns:
|
||||
mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1
|
||||
"""
|
||||
mixture_w = F.relu(self.conv1d_U(mixture)) # [M, N, K]
|
||||
return mixture_w
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, N, L, audio_channels):
|
||||
super(Decoder, self).__init__()
|
||||
# Hyper-parameter
|
||||
self.N, self.L = N, L
|
||||
self.audio_channels = audio_channels
|
||||
# Components
|
||||
self.basis_signals = nn.Linear(N, audio_channels * L, bias=False)
|
||||
|
||||
def forward(self, mixture_w, est_mask):
|
||||
"""
|
||||
Args:
|
||||
mixture_w: [M, N, K]
|
||||
est_mask: [M, C, N, K]
|
||||
Returns:
|
||||
est_source: [M, C, T]
|
||||
"""
|
||||
# D = W * M
|
||||
source_w = torch.unsqueeze(mixture_w, 1) * est_mask # [M, C, N, K]
|
||||
source_w = torch.transpose(source_w, 2, 3) # [M, C, K, N]
|
||||
# S = DV
|
||||
est_source = self.basis_signals(source_w) # [M, C, K, ac * L]
|
||||
m, c, k, _ = est_source.size()
|
||||
est_source = est_source.view(m, c, k, self.audio_channels, -1).transpose(2, 3).contiguous()
|
||||
est_source = overlap_and_add(est_source, self.L // 2) # M x C x ac x T
|
||||
return est_source
|
||||
|
||||
|
||||
class TemporalConvNet(nn.Module):
|
||||
def __init__(self, N, B, H, P, X, R, C, norm_type="gLN", causal=False, mask_nonlinear='relu'):
|
||||
"""
|
||||
Args:
|
||||
N: Number of filters in autoencoder
|
||||
B: Number of channels in bottleneck 1 × 1-conv block
|
||||
H: Number of channels in convolutional blocks
|
||||
P: Kernel size in convolutional blocks
|
||||
X: Number of convolutional blocks in each repeat
|
||||
R: Number of repeats
|
||||
C: Number of speakers
|
||||
norm_type: BN, gLN, cLN
|
||||
causal: causal or non-causal
|
||||
mask_nonlinear: use which non-linear function to generate mask
|
||||
"""
|
||||
super(TemporalConvNet, self).__init__()
|
||||
# Hyper-parameter
|
||||
self.C = C
|
||||
self.mask_nonlinear = mask_nonlinear
|
||||
# Components
|
||||
# [M, N, K] -> [M, N, K]
|
||||
layer_norm = ChannelwiseLayerNorm(N)
|
||||
# [M, N, K] -> [M, B, K]
|
||||
bottleneck_conv1x1 = nn.Conv1d(N, B, 1, bias=False)
|
||||
# [M, B, K] -> [M, B, K]
|
||||
repeats = []
|
||||
for r in range(R):
|
||||
blocks = []
|
||||
for x in range(X):
|
||||
dilation = 2**x
|
||||
padding = (P - 1) * dilation if causal else (P - 1) * dilation // 2
|
||||
blocks += [
|
||||
TemporalBlock(B,
|
||||
H,
|
||||
P,
|
||||
stride=1,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
norm_type=norm_type,
|
||||
causal=causal)
|
||||
]
|
||||
repeats += [nn.Sequential(*blocks)]
|
||||
temporal_conv_net = nn.Sequential(*repeats)
|
||||
# [M, B, K] -> [M, C*N, K]
|
||||
mask_conv1x1 = nn.Conv1d(B, C * N, 1, bias=False)
|
||||
# Put together
|
||||
self.network = nn.Sequential(layer_norm, bottleneck_conv1x1, temporal_conv_net,
|
||||
mask_conv1x1)
|
||||
|
||||
def forward(self, mixture_w):
|
||||
"""
|
||||
Keep this API same with TasNet
|
||||
Args:
|
||||
mixture_w: [M, N, K], M is batch size
|
||||
returns:
|
||||
est_mask: [M, C, N, K]
|
||||
"""
|
||||
M, N, K = mixture_w.size()
|
||||
score = self.network(mixture_w) # [M, N, K] -> [M, C*N, K]
|
||||
score = score.view(M, self.C, N, K) # [M, C*N, K] -> [M, C, N, K]
|
||||
if self.mask_nonlinear == 'softmax':
|
||||
est_mask = F.softmax(score, dim=1)
|
||||
elif self.mask_nonlinear == 'relu':
|
||||
est_mask = F.relu(score)
|
||||
else:
|
||||
raise ValueError("Unsupported mask non-linear function")
|
||||
return est_mask
|
||||
|
||||
|
||||
class TemporalBlock(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
norm_type="gLN",
|
||||
causal=False):
|
||||
super(TemporalBlock, self).__init__()
|
||||
# [M, B, K] -> [M, H, K]
|
||||
conv1x1 = nn.Conv1d(in_channels, out_channels, 1, bias=False)
|
||||
prelu = nn.PReLU()
|
||||
norm = chose_norm(norm_type, out_channels)
|
||||
# [M, H, K] -> [M, B, K]
|
||||
dsconv = DepthwiseSeparableConv(out_channels, in_channels, kernel_size, stride, padding,
|
||||
dilation, norm_type, causal)
|
||||
# Put together
|
||||
self.net = nn.Sequential(conv1x1, prelu, norm, dsconv)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: [M, B, K]
|
||||
Returns:
|
||||
[M, B, K]
|
||||
"""
|
||||
residual = x
|
||||
out = self.net(x)
|
||||
# TODO: when P = 3 here works fine, but when P = 2 maybe need to pad?
|
||||
return out + residual # look like w/o F.relu is better than w/ F.relu
|
||||
# return F.relu(out + residual)
|
||||
|
||||
|
||||
class DepthwiseSeparableConv(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
norm_type="gLN",
|
||||
causal=False):
|
||||
super(DepthwiseSeparableConv, self).__init__()
|
||||
# Use `groups` option to implement depthwise convolution
|
||||
# [M, H, K] -> [M, H, K]
|
||||
depthwise_conv = nn.Conv1d(in_channels,
|
||||
in_channels,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=in_channels,
|
||||
bias=False)
|
||||
if causal:
|
||||
chomp = Chomp1d(padding)
|
||||
prelu = nn.PReLU()
|
||||
norm = chose_norm(norm_type, in_channels)
|
||||
# [M, H, K] -> [M, B, K]
|
||||
pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, bias=False)
|
||||
# Put together
|
||||
if causal:
|
||||
self.net = nn.Sequential(depthwise_conv, chomp, prelu, norm, pointwise_conv)
|
||||
else:
|
||||
self.net = nn.Sequential(depthwise_conv, prelu, norm, pointwise_conv)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: [M, H, K]
|
||||
Returns:
|
||||
result: [M, B, K]
|
||||
"""
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class Chomp1d(nn.Module):
|
||||
"""To ensure the output length is the same as the input.
|
||||
"""
|
||||
def __init__(self, chomp_size):
|
||||
super(Chomp1d, self).__init__()
|
||||
self.chomp_size = chomp_size
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: [M, H, Kpad]
|
||||
Returns:
|
||||
[M, H, K]
|
||||
"""
|
||||
return x[:, :, :-self.chomp_size].contiguous()
|
||||
|
||||
|
||||
def chose_norm(norm_type, channel_size):
|
||||
"""The input of normlization will be (M, C, K), where M is batch size,
|
||||
C is channel size and K is sequence length.
|
||||
"""
|
||||
if norm_type == "gLN":
|
||||
return GlobalLayerNorm(channel_size)
|
||||
elif norm_type == "cLN":
|
||||
return ChannelwiseLayerNorm(channel_size)
|
||||
elif norm_type == "id":
|
||||
return nn.Identity()
|
||||
else: # norm_type == "BN":
|
||||
# Given input (M, C, K), nn.BatchNorm1d(C) will accumulate statics
|
||||
# along M and K, so this BN usage is right.
|
||||
return nn.BatchNorm1d(channel_size)
|
||||
|
||||
|
||||
# TODO: Use nn.LayerNorm to impl cLN to speed up
|
||||
class ChannelwiseLayerNorm(nn.Module):
|
||||
"""Channel-wise Layer Normalization (cLN)"""
|
||||
def __init__(self, channel_size):
|
||||
super(ChannelwiseLayerNorm, self).__init__()
|
||||
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||||
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
self.gamma.data.fill_(1)
|
||||
self.beta.data.zero_()
|
||||
|
||||
def forward(self, y):
|
||||
"""
|
||||
Args:
|
||||
y: [M, N, K], M is batch size, N is channel size, K is length
|
||||
Returns:
|
||||
cLN_y: [M, N, K]
|
||||
"""
|
||||
mean = torch.mean(y, dim=1, keepdim=True) # [M, 1, K]
|
||||
var = torch.var(y, dim=1, keepdim=True, unbiased=False) # [M, 1, K]
|
||||
cLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
|
||||
return cLN_y
|
||||
|
||||
|
||||
class GlobalLayerNorm(nn.Module):
|
||||
"""Global Layer Normalization (gLN)"""
|
||||
def __init__(self, channel_size):
|
||||
super(GlobalLayerNorm, self).__init__()
|
||||
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||||
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
self.gamma.data.fill_(1)
|
||||
self.beta.data.zero_()
|
||||
|
||||
def forward(self, y):
|
||||
"""
|
||||
Args:
|
||||
y: [M, N, K], M is batch size, N is channel size, K is length
|
||||
Returns:
|
||||
gLN_y: [M, N, K]
|
||||
"""
|
||||
# TODO: in torch 1.0, torch.mean() support dim list
|
||||
mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) # [M, 1, 1]
|
||||
var = (torch.pow(y - mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True)
|
||||
gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
|
||||
return gLN_y
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(123)
|
||||
M, N, L, T = 2, 3, 4, 12
|
||||
K = 2 * T // L - 1
|
||||
B, H, P, X, R, C, norm_type, causal = 2, 3, 3, 3, 2, 2, "gLN", False
|
||||
mixture = torch.randint(3, (M, T))
|
||||
# test Encoder
|
||||
encoder = Encoder(L, N)
|
||||
encoder.conv1d_U.weight.data = torch.randint(2, encoder.conv1d_U.weight.size())
|
||||
mixture_w = encoder(mixture)
|
||||
print('mixture', mixture)
|
||||
print('U', encoder.conv1d_U.weight)
|
||||
print('mixture_w', mixture_w)
|
||||
print('mixture_w size', mixture_w.size())
|
||||
|
||||
# test TemporalConvNet
|
||||
separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type=norm_type, causal=causal)
|
||||
est_mask = separator(mixture_w)
|
||||
print('est_mask', est_mask)
|
||||
|
||||
# test Decoder
|
||||
decoder = Decoder(N, L)
|
||||
est_mask = torch.randint(2, (B, K, C, N))
|
||||
est_source = decoder(mixture_w, est_mask)
|
||||
print('est_source', est_source)
|
||||
|
||||
# test Conv-TasNet
|
||||
conv_tasnet = ConvTasNet(N, L, B, H, P, X, R, C, norm_type=norm_type)
|
||||
est_source = conv_tasnet(mixture)
|
||||
print('est_source', est_source)
|
||||
print('est_source size', est_source.size())
|
||||
452
demucs/tasnet_v2.py
Normal file
452
demucs/tasnet_v2.py
Normal file
@@ -0,0 +1,452 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
# Created on 2018/12
|
||||
# Author: Kaituo XU
|
||||
# Modified on 2019/11 by Alexandre Defossez, added support for multiple output channels
|
||||
# Here is the original license:
|
||||
# The MIT License (MIT)
|
||||
#
|
||||
# Copyright (c) 2018 Kaituo XU
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .utils import capture_init
|
||||
|
||||
EPS = 1e-8
|
||||
|
||||
|
||||
def overlap_and_add(signal, frame_step):
|
||||
outer_dimensions = signal.size()[:-2]
|
||||
frames, frame_length = signal.size()[-2:]
|
||||
|
||||
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor
|
||||
subframe_step = frame_step // subframe_length
|
||||
subframes_per_frame = frame_length // subframe_length
|
||||
output_size = frame_step * (frames - 1) + frame_length
|
||||
output_subframes = output_size // subframe_length
|
||||
|
||||
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
|
||||
|
||||
frame = torch.arange(0, output_subframes,
|
||||
device=signal.device).unfold(0, subframes_per_frame, subframe_step)
|
||||
frame = frame.long() # signal may in GPU or CPU
|
||||
frame = frame.contiguous().view(-1)
|
||||
|
||||
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
|
||||
result.index_add_(-2, frame, subframe_signal)
|
||||
result = result.view(*outer_dimensions, -1)
|
||||
return result
|
||||
|
||||
|
||||
class ConvTasNet(nn.Module):
|
||||
@capture_init
|
||||
def __init__(self,
|
||||
sources,
|
||||
N=256,
|
||||
L=20,
|
||||
B=256,
|
||||
H=512,
|
||||
P=3,
|
||||
X=8,
|
||||
R=4,
|
||||
audio_channels=2,
|
||||
norm_type="gLN",
|
||||
causal=False,
|
||||
mask_nonlinear='relu',
|
||||
samplerate=44100,
|
||||
segment_length=44100 * 2 * 4):
|
||||
"""
|
||||
Args:
|
||||
sources: list of sources
|
||||
N: Number of filters in autoencoder
|
||||
L: Length of the filters (in samples)
|
||||
B: Number of channels in bottleneck 1 × 1-conv block
|
||||
H: Number of channels in convolutional blocks
|
||||
P: Kernel size in convolutional blocks
|
||||
X: Number of convolutional blocks in each repeat
|
||||
R: Number of repeats
|
||||
norm_type: BN, gLN, cLN
|
||||
causal: causal or non-causal
|
||||
mask_nonlinear: use which non-linear function to generate mask
|
||||
"""
|
||||
super(ConvTasNet, self).__init__()
|
||||
# Hyper-parameter
|
||||
self.sources = sources
|
||||
self.C = len(sources)
|
||||
self.N, self.L, self.B, self.H, self.P, self.X, self.R = N, L, B, H, P, X, R
|
||||
self.norm_type = norm_type
|
||||
self.causal = causal
|
||||
self.mask_nonlinear = mask_nonlinear
|
||||
self.audio_channels = audio_channels
|
||||
self.samplerate = samplerate
|
||||
self.segment_length = segment_length
|
||||
# Components
|
||||
self.encoder = Encoder(L, N, audio_channels)
|
||||
self.separator = TemporalConvNet(
|
||||
N, B, H, P, X, R, self.C, norm_type, causal, mask_nonlinear)
|
||||
self.decoder = Decoder(N, L, audio_channels)
|
||||
# init
|
||||
for p in self.parameters():
|
||||
if p.dim() > 1:
|
||||
nn.init.xavier_normal_(p)
|
||||
|
||||
def valid_length(self, length):
|
||||
return length
|
||||
|
||||
def forward(self, mixture):
|
||||
"""
|
||||
Args:
|
||||
mixture: [M, T], M is batch size, T is #samples
|
||||
Returns:
|
||||
est_source: [M, C, T]
|
||||
"""
|
||||
mixture_w = self.encoder(mixture)
|
||||
est_mask = self.separator(mixture_w)
|
||||
est_source = self.decoder(mixture_w, est_mask)
|
||||
|
||||
# T changed after conv1d in encoder, fix it here
|
||||
T_origin = mixture.size(-1)
|
||||
T_conv = est_source.size(-1)
|
||||
est_source = F.pad(est_source, (0, T_origin - T_conv))
|
||||
return est_source
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
"""Estimation of the nonnegative mixture weight by a 1-D conv layer.
|
||||
"""
|
||||
def __init__(self, L, N, audio_channels):
|
||||
super(Encoder, self).__init__()
|
||||
# Hyper-parameter
|
||||
self.L, self.N = L, N
|
||||
# Components
|
||||
# 50% overlap
|
||||
self.conv1d_U = nn.Conv1d(audio_channels, N, kernel_size=L, stride=L // 2, bias=False)
|
||||
|
||||
def forward(self, mixture):
|
||||
"""
|
||||
Args:
|
||||
mixture: [M, T], M is batch size, T is #samples
|
||||
Returns:
|
||||
mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1
|
||||
"""
|
||||
mixture_w = F.relu(self.conv1d_U(mixture)) # [M, N, K]
|
||||
return mixture_w
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(self, N, L, audio_channels):
|
||||
super(Decoder, self).__init__()
|
||||
# Hyper-parameter
|
||||
self.N, self.L = N, L
|
||||
self.audio_channels = audio_channels
|
||||
# Components
|
||||
self.basis_signals = nn.Linear(N, audio_channels * L, bias=False)
|
||||
|
||||
def forward(self, mixture_w, est_mask):
|
||||
"""
|
||||
Args:
|
||||
mixture_w: [M, N, K]
|
||||
est_mask: [M, C, N, K]
|
||||
Returns:
|
||||
est_source: [M, C, T]
|
||||
"""
|
||||
# D = W * M
|
||||
source_w = torch.unsqueeze(mixture_w, 1) * est_mask # [M, C, N, K]
|
||||
source_w = torch.transpose(source_w, 2, 3) # [M, C, K, N]
|
||||
# S = DV
|
||||
est_source = self.basis_signals(source_w) # [M, C, K, ac * L]
|
||||
m, c, k, _ = est_source.size()
|
||||
est_source = est_source.view(m, c, k, self.audio_channels, -1).transpose(2, 3).contiguous()
|
||||
est_source = overlap_and_add(est_source, self.L // 2) # M x C x ac x T
|
||||
return est_source
|
||||
|
||||
|
||||
class TemporalConvNet(nn.Module):
|
||||
def __init__(self, N, B, H, P, X, R, C, norm_type="gLN", causal=False, mask_nonlinear='relu'):
|
||||
"""
|
||||
Args:
|
||||
N: Number of filters in autoencoder
|
||||
B: Number of channels in bottleneck 1 × 1-conv block
|
||||
H: Number of channels in convolutional blocks
|
||||
P: Kernel size in convolutional blocks
|
||||
X: Number of convolutional blocks in each repeat
|
||||
R: Number of repeats
|
||||
C: Number of speakers
|
||||
norm_type: BN, gLN, cLN
|
||||
causal: causal or non-causal
|
||||
mask_nonlinear: use which non-linear function to generate mask
|
||||
"""
|
||||
super(TemporalConvNet, self).__init__()
|
||||
# Hyper-parameter
|
||||
self.C = C
|
||||
self.mask_nonlinear = mask_nonlinear
|
||||
# Components
|
||||
# [M, N, K] -> [M, N, K]
|
||||
layer_norm = ChannelwiseLayerNorm(N)
|
||||
# [M, N, K] -> [M, B, K]
|
||||
bottleneck_conv1x1 = nn.Conv1d(N, B, 1, bias=False)
|
||||
# [M, B, K] -> [M, B, K]
|
||||
repeats = []
|
||||
for r in range(R):
|
||||
blocks = []
|
||||
for x in range(X):
|
||||
dilation = 2**x
|
||||
padding = (P - 1) * dilation if causal else (P - 1) * dilation // 2
|
||||
blocks += [
|
||||
TemporalBlock(B,
|
||||
H,
|
||||
P,
|
||||
stride=1,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
norm_type=norm_type,
|
||||
causal=causal)
|
||||
]
|
||||
repeats += [nn.Sequential(*blocks)]
|
||||
temporal_conv_net = nn.Sequential(*repeats)
|
||||
# [M, B, K] -> [M, C*N, K]
|
||||
mask_conv1x1 = nn.Conv1d(B, C * N, 1, bias=False)
|
||||
# Put together
|
||||
self.network = nn.Sequential(layer_norm, bottleneck_conv1x1, temporal_conv_net,
|
||||
mask_conv1x1)
|
||||
|
||||
def forward(self, mixture_w):
|
||||
"""
|
||||
Keep this API same with TasNet
|
||||
Args:
|
||||
mixture_w: [M, N, K], M is batch size
|
||||
returns:
|
||||
est_mask: [M, C, N, K]
|
||||
"""
|
||||
M, N, K = mixture_w.size()
|
||||
score = self.network(mixture_w) # [M, N, K] -> [M, C*N, K]
|
||||
score = score.view(M, self.C, N, K) # [M, C*N, K] -> [M, C, N, K]
|
||||
if self.mask_nonlinear == 'softmax':
|
||||
est_mask = F.softmax(score, dim=1)
|
||||
elif self.mask_nonlinear == 'relu':
|
||||
est_mask = F.relu(score)
|
||||
else:
|
||||
raise ValueError("Unsupported mask non-linear function")
|
||||
return est_mask
|
||||
|
||||
|
||||
class TemporalBlock(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
norm_type="gLN",
|
||||
causal=False):
|
||||
super(TemporalBlock, self).__init__()
|
||||
# [M, B, K] -> [M, H, K]
|
||||
conv1x1 = nn.Conv1d(in_channels, out_channels, 1, bias=False)
|
||||
prelu = nn.PReLU()
|
||||
norm = chose_norm(norm_type, out_channels)
|
||||
# [M, H, K] -> [M, B, K]
|
||||
dsconv = DepthwiseSeparableConv(out_channels, in_channels, kernel_size, stride, padding,
|
||||
dilation, norm_type, causal)
|
||||
# Put together
|
||||
self.net = nn.Sequential(conv1x1, prelu, norm, dsconv)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: [M, B, K]
|
||||
Returns:
|
||||
[M, B, K]
|
||||
"""
|
||||
residual = x
|
||||
out = self.net(x)
|
||||
# TODO: when P = 3 here works fine, but when P = 2 maybe need to pad?
|
||||
return out + residual # look like w/o F.relu is better than w/ F.relu
|
||||
# return F.relu(out + residual)
|
||||
|
||||
|
||||
class DepthwiseSeparableConv(nn.Module):
|
||||
def __init__(self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride,
|
||||
padding,
|
||||
dilation,
|
||||
norm_type="gLN",
|
||||
causal=False):
|
||||
super(DepthwiseSeparableConv, self).__init__()
|
||||
# Use `groups` option to implement depthwise convolution
|
||||
# [M, H, K] -> [M, H, K]
|
||||
depthwise_conv = nn.Conv1d(in_channels,
|
||||
in_channels,
|
||||
kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
groups=in_channels,
|
||||
bias=False)
|
||||
if causal:
|
||||
chomp = Chomp1d(padding)
|
||||
prelu = nn.PReLU()
|
||||
norm = chose_norm(norm_type, in_channels)
|
||||
# [M, H, K] -> [M, B, K]
|
||||
pointwise_conv = nn.Conv1d(in_channels, out_channels, 1, bias=False)
|
||||
# Put together
|
||||
if causal:
|
||||
self.net = nn.Sequential(depthwise_conv, chomp, prelu, norm, pointwise_conv)
|
||||
else:
|
||||
self.net = nn.Sequential(depthwise_conv, prelu, norm, pointwise_conv)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: [M, H, K]
|
||||
Returns:
|
||||
result: [M, B, K]
|
||||
"""
|
||||
return self.net(x)
|
||||
|
||||
|
||||
class Chomp1d(nn.Module):
|
||||
"""To ensure the output length is the same as the input.
|
||||
"""
|
||||
def __init__(self, chomp_size):
|
||||
super(Chomp1d, self).__init__()
|
||||
self.chomp_size = chomp_size
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
Args:
|
||||
x: [M, H, Kpad]
|
||||
Returns:
|
||||
[M, H, K]
|
||||
"""
|
||||
return x[:, :, :-self.chomp_size].contiguous()
|
||||
|
||||
|
||||
def chose_norm(norm_type, channel_size):
|
||||
"""The input of normlization will be (M, C, K), where M is batch size,
|
||||
C is channel size and K is sequence length.
|
||||
"""
|
||||
if norm_type == "gLN":
|
||||
return GlobalLayerNorm(channel_size)
|
||||
elif norm_type == "cLN":
|
||||
return ChannelwiseLayerNorm(channel_size)
|
||||
elif norm_type == "id":
|
||||
return nn.Identity()
|
||||
else: # norm_type == "BN":
|
||||
# Given input (M, C, K), nn.BatchNorm1d(C) will accumulate statics
|
||||
# along M and K, so this BN usage is right.
|
||||
return nn.BatchNorm1d(channel_size)
|
||||
|
||||
|
||||
# TODO: Use nn.LayerNorm to impl cLN to speed up
|
||||
class ChannelwiseLayerNorm(nn.Module):
|
||||
"""Channel-wise Layer Normalization (cLN)"""
|
||||
def __init__(self, channel_size):
|
||||
super(ChannelwiseLayerNorm, self).__init__()
|
||||
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||||
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
self.gamma.data.fill_(1)
|
||||
self.beta.data.zero_()
|
||||
|
||||
def forward(self, y):
|
||||
"""
|
||||
Args:
|
||||
y: [M, N, K], M is batch size, N is channel size, K is length
|
||||
Returns:
|
||||
cLN_y: [M, N, K]
|
||||
"""
|
||||
mean = torch.mean(y, dim=1, keepdim=True) # [M, 1, K]
|
||||
var = torch.var(y, dim=1, keepdim=True, unbiased=False) # [M, 1, K]
|
||||
cLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
|
||||
return cLN_y
|
||||
|
||||
|
||||
class GlobalLayerNorm(nn.Module):
|
||||
"""Global Layer Normalization (gLN)"""
|
||||
def __init__(self, channel_size):
|
||||
super(GlobalLayerNorm, self).__init__()
|
||||
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||||
self.beta = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self):
|
||||
self.gamma.data.fill_(1)
|
||||
self.beta.data.zero_()
|
||||
|
||||
def forward(self, y):
|
||||
"""
|
||||
Args:
|
||||
y: [M, N, K], M is batch size, N is channel size, K is length
|
||||
Returns:
|
||||
gLN_y: [M, N, K]
|
||||
"""
|
||||
# TODO: in torch 1.0, torch.mean() support dim list
|
||||
mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) # [M, 1, 1]
|
||||
var = (torch.pow(y - mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True)
|
||||
gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
|
||||
return gLN_y
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
torch.manual_seed(123)
|
||||
M, N, L, T = 2, 3, 4, 12
|
||||
K = 2 * T // L - 1
|
||||
B, H, P, X, R, C, norm_type, causal = 2, 3, 3, 3, 2, 2, "gLN", False
|
||||
mixture = torch.randint(3, (M, T))
|
||||
# test Encoder
|
||||
encoder = Encoder(L, N)
|
||||
encoder.conv1d_U.weight.data = torch.randint(2, encoder.conv1d_U.weight.size())
|
||||
mixture_w = encoder(mixture)
|
||||
print('mixture', mixture)
|
||||
print('U', encoder.conv1d_U.weight)
|
||||
print('mixture_w', mixture_w)
|
||||
print('mixture_w size', mixture_w.size())
|
||||
|
||||
# test TemporalConvNet
|
||||
separator = TemporalConvNet(N, B, H, P, X, R, C, norm_type=norm_type, causal=causal)
|
||||
est_mask = separator(mixture_w)
|
||||
print('est_mask', est_mask)
|
||||
|
||||
# test Decoder
|
||||
decoder = Decoder(N, L)
|
||||
est_mask = torch.randint(2, (B, K, C, N))
|
||||
est_source = decoder(mixture_w, est_mask)
|
||||
print('est_source', est_source)
|
||||
|
||||
# test Conv-TasNet
|
||||
conv_tasnet = ConvTasNet(N, L, B, H, P, X, R, C, norm_type=norm_type)
|
||||
est_source = conv_tasnet(mixture)
|
||||
print('est_source', est_source)
|
||||
print('est_source size', est_source.size())
|
||||
839
demucs/transformer.py
Normal file
839
demucs/transformer.py
Normal file
@@ -0,0 +1,839 @@
|
||||
# Copyright (c) 2019-present, Meta, Inc.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
# First author is Simon Rouard.
|
||||
|
||||
import random
|
||||
import typing as tp
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import numpy as np
|
||||
import math
|
||||
from einops import rearrange
|
||||
|
||||
|
||||
def create_sin_embedding(
|
||||
length: int, dim: int, shift: int = 0, device="cpu", max_period=10000
|
||||
):
|
||||
# We aim for TBC format
|
||||
assert dim % 2 == 0
|
||||
pos = shift + torch.arange(length, device=device).view(-1, 1, 1)
|
||||
half_dim = dim // 2
|
||||
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
|
||||
phase = pos / (max_period ** (adim / (half_dim - 1)))
|
||||
return torch.cat(
|
||||
[
|
||||
torch.cos(phase),
|
||||
torch.sin(phase),
|
||||
],
|
||||
dim=-1,
|
||||
)
|
||||
|
||||
|
||||
def create_2d_sin_embedding(d_model, height, width, device="cpu", max_period=10000):
|
||||
"""
|
||||
:param d_model: dimension of the model
|
||||
:param height: height of the positions
|
||||
:param width: width of the positions
|
||||
:return: d_model*height*width position matrix
|
||||
"""
|
||||
if d_model % 4 != 0:
|
||||
raise ValueError(
|
||||
"Cannot use sin/cos positional encoding with "
|
||||
"odd dimension (got dim={:d})".format(d_model)
|
||||
)
|
||||
pe = torch.zeros(d_model, height, width)
|
||||
# Each dimension use half of d_model
|
||||
d_model = int(d_model / 2)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0.0, d_model, 2) * -(math.log(max_period) / d_model)
|
||||
)
|
||||
pos_w = torch.arange(0.0, width).unsqueeze(1)
|
||||
pos_h = torch.arange(0.0, height).unsqueeze(1)
|
||||
pe[0:d_model:2, :, :] = (
|
||||
torch.sin(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
|
||||
)
|
||||
pe[1:d_model:2, :, :] = (
|
||||
torch.cos(pos_w * div_term).transpose(0, 1).unsqueeze(1).repeat(1, height, 1)
|
||||
)
|
||||
pe[d_model::2, :, :] = (
|
||||
torch.sin(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
|
||||
)
|
||||
pe[d_model + 1:: 2, :, :] = (
|
||||
torch.cos(pos_h * div_term).transpose(0, 1).unsqueeze(2).repeat(1, 1, width)
|
||||
)
|
||||
|
||||
return pe[None, :].to(device)
|
||||
|
||||
|
||||
def create_sin_embedding_cape(
|
||||
length: int,
|
||||
dim: int,
|
||||
batch_size: int,
|
||||
mean_normalize: bool,
|
||||
augment: bool, # True during training
|
||||
max_global_shift: float = 0.0, # delta max
|
||||
max_local_shift: float = 0.0, # epsilon max
|
||||
max_scale: float = 1.0,
|
||||
device: str = "cpu",
|
||||
max_period: float = 10000.0,
|
||||
):
|
||||
# We aim for TBC format
|
||||
assert dim % 2 == 0
|
||||
pos = 1.0 * torch.arange(length).view(-1, 1, 1) # (length, 1, 1)
|
||||
pos = pos.repeat(1, batch_size, 1) # (length, batch_size, 1)
|
||||
if mean_normalize:
|
||||
pos -= torch.nanmean(pos, dim=0, keepdim=True)
|
||||
|
||||
if augment:
|
||||
delta = np.random.uniform(
|
||||
-max_global_shift, +max_global_shift, size=[1, batch_size, 1]
|
||||
)
|
||||
delta_local = np.random.uniform(
|
||||
-max_local_shift, +max_local_shift, size=[length, batch_size, 1]
|
||||
)
|
||||
log_lambdas = np.random.uniform(
|
||||
-np.log(max_scale), +np.log(max_scale), size=[1, batch_size, 1]
|
||||
)
|
||||
pos = (pos + delta + delta_local) * np.exp(log_lambdas)
|
||||
|
||||
pos = pos.to(device)
|
||||
|
||||
half_dim = dim // 2
|
||||
adim = torch.arange(dim // 2, device=device).view(1, 1, -1)
|
||||
phase = pos / (max_period ** (adim / (half_dim - 1)))
|
||||
return torch.cat(
|
||||
[
|
||||
torch.cos(phase),
|
||||
torch.sin(phase),
|
||||
],
|
||||
dim=-1,
|
||||
).float()
|
||||
|
||||
|
||||
def get_causal_mask(length):
|
||||
pos = torch.arange(length)
|
||||
return pos > pos[:, None]
|
||||
|
||||
|
||||
def get_elementary_mask(
|
||||
T1,
|
||||
T2,
|
||||
mask_type,
|
||||
sparse_attn_window,
|
||||
global_window,
|
||||
mask_random_seed,
|
||||
sparsity,
|
||||
device,
|
||||
):
|
||||
"""
|
||||
When the input of the Decoder has length T1 and the output T2
|
||||
The mask matrix has shape (T2, T1)
|
||||
"""
|
||||
assert mask_type in ["diag", "jmask", "random", "global"]
|
||||
|
||||
if mask_type == "global":
|
||||
mask = torch.zeros(T2, T1, dtype=torch.bool)
|
||||
mask[:, :global_window] = True
|
||||
line_window = int(global_window * T2 / T1)
|
||||
mask[:line_window, :] = True
|
||||
|
||||
if mask_type == "diag":
|
||||
|
||||
mask = torch.zeros(T2, T1, dtype=torch.bool)
|
||||
rows = torch.arange(T2)[:, None]
|
||||
cols = (
|
||||
(T1 / T2 * rows + torch.arange(-sparse_attn_window, sparse_attn_window + 1))
|
||||
.long()
|
||||
.clamp(0, T1 - 1)
|
||||
)
|
||||
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
|
||||
|
||||
elif mask_type == "jmask":
|
||||
mask = torch.zeros(T2 + 2, T1 + 2, dtype=torch.bool)
|
||||
rows = torch.arange(T2 + 2)[:, None]
|
||||
t = torch.arange(0, int((2 * T1) ** 0.5 + 1))
|
||||
t = (t * (t + 1) / 2).int()
|
||||
t = torch.cat([-t.flip(0)[:-1], t])
|
||||
cols = (T1 / T2 * rows + t).long().clamp(0, T1 + 1)
|
||||
mask.scatter_(1, cols, torch.ones(1, dtype=torch.bool).expand_as(cols))
|
||||
mask = mask[1:-1, 1:-1]
|
||||
|
||||
elif mask_type == "random":
|
||||
gene = torch.Generator(device=device)
|
||||
gene.manual_seed(mask_random_seed)
|
||||
mask = (
|
||||
torch.rand(T1 * T2, generator=gene, device=device).reshape(T2, T1)
|
||||
> sparsity
|
||||
)
|
||||
|
||||
mask = mask.to(device)
|
||||
return mask
|
||||
|
||||
|
||||
def get_mask(
|
||||
T1,
|
||||
T2,
|
||||
mask_type,
|
||||
sparse_attn_window,
|
||||
global_window,
|
||||
mask_random_seed,
|
||||
sparsity,
|
||||
device,
|
||||
):
|
||||
"""
|
||||
Return a SparseCSRTensor mask that is a combination of elementary masks
|
||||
mask_type can be a combination of multiple masks: for instance "diag_jmask_random"
|
||||
"""
|
||||
from xformers.sparse import SparseCSRTensor
|
||||
# create a list
|
||||
mask_types = mask_type.split("_")
|
||||
|
||||
all_masks = [
|
||||
get_elementary_mask(
|
||||
T1,
|
||||
T2,
|
||||
mask,
|
||||
sparse_attn_window,
|
||||
global_window,
|
||||
mask_random_seed,
|
||||
sparsity,
|
||||
device,
|
||||
)
|
||||
for mask in mask_types
|
||||
]
|
||||
|
||||
final_mask = torch.stack(all_masks).sum(axis=0) > 0
|
||||
|
||||
return SparseCSRTensor.from_dense(final_mask[None])
|
||||
|
||||
|
||||
class ScaledEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
num_embeddings: int,
|
||||
embedding_dim: int,
|
||||
scale: float = 1.0,
|
||||
boost: float = 3.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.embedding = nn.Embedding(num_embeddings, embedding_dim)
|
||||
self.embedding.weight.data *= scale / boost
|
||||
self.boost = boost
|
||||
|
||||
@property
|
||||
def weight(self):
|
||||
return self.embedding.weight * self.boost
|
||||
|
||||
def forward(self, x):
|
||||
return self.embedding(x) * self.boost
|
||||
|
||||
|
||||
class LayerScale(nn.Module):
|
||||
"""Layer scale from [Touvron et al 2021] (https://arxiv.org/pdf/2103.17239.pdf).
|
||||
This rescales diagonaly residual outputs close to 0 initially, then learnt.
|
||||
"""
|
||||
|
||||
def __init__(self, channels: int, init: float = 0, channel_last=False):
|
||||
"""
|
||||
channel_last = False corresponds to (B, C, T) tensors
|
||||
channel_last = True corresponds to (T, B, C) tensors
|
||||
"""
|
||||
super().__init__()
|
||||
self.channel_last = channel_last
|
||||
self.scale = nn.Parameter(torch.zeros(channels, requires_grad=True))
|
||||
self.scale.data[:] = init
|
||||
|
||||
def forward(self, x):
|
||||
if self.channel_last:
|
||||
return self.scale * x
|
||||
else:
|
||||
return self.scale[:, None] * x
|
||||
|
||||
|
||||
class MyGroupNorm(nn.GroupNorm):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
def forward(self, x):
|
||||
"""
|
||||
x: (B, T, C)
|
||||
if num_groups=1: Normalisation on all T and C together for each B
|
||||
"""
|
||||
x = x.transpose(1, 2)
|
||||
return super().forward(x).transpose(1, 2)
|
||||
|
||||
|
||||
class MyTransformerEncoderLayer(nn.TransformerEncoderLayer):
|
||||
def __init__(
|
||||
self,
|
||||
d_model,
|
||||
nhead,
|
||||
dim_feedforward=2048,
|
||||
dropout=0.1,
|
||||
activation=F.relu,
|
||||
group_norm=0,
|
||||
norm_first=False,
|
||||
norm_out=False,
|
||||
layer_norm_eps=1e-5,
|
||||
layer_scale=False,
|
||||
init_values=1e-4,
|
||||
device=None,
|
||||
dtype=None,
|
||||
sparse=False,
|
||||
mask_type="diag",
|
||||
mask_random_seed=42,
|
||||
sparse_attn_window=500,
|
||||
global_window=50,
|
||||
auto_sparsity=False,
|
||||
sparsity=0.95,
|
||||
batch_first=False,
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__(
|
||||
d_model=d_model,
|
||||
nhead=nhead,
|
||||
dim_feedforward=dim_feedforward,
|
||||
dropout=dropout,
|
||||
activation=activation,
|
||||
layer_norm_eps=layer_norm_eps,
|
||||
batch_first=batch_first,
|
||||
norm_first=norm_first,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
self.sparse = sparse
|
||||
self.auto_sparsity = auto_sparsity
|
||||
if sparse:
|
||||
if not auto_sparsity:
|
||||
self.mask_type = mask_type
|
||||
self.sparse_attn_window = sparse_attn_window
|
||||
self.global_window = global_window
|
||||
self.sparsity = sparsity
|
||||
if group_norm:
|
||||
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
|
||||
self.norm_out = None
|
||||
if self.norm_first & norm_out:
|
||||
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
|
||||
self.gamma_1 = (
|
||||
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
||||
)
|
||||
self.gamma_2 = (
|
||||
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
||||
)
|
||||
|
||||
if sparse:
|
||||
self.self_attn = MultiheadAttention(
|
||||
d_model, nhead, dropout=dropout, batch_first=batch_first,
|
||||
auto_sparsity=sparsity if auto_sparsity else 0,
|
||||
)
|
||||
self.__setattr__("src_mask", torch.zeros(1, 1))
|
||||
self.mask_random_seed = mask_random_seed
|
||||
|
||||
def forward(self, src, src_mask=None, src_key_padding_mask=None):
|
||||
"""
|
||||
if batch_first = False, src shape is (T, B, C)
|
||||
the case where batch_first=True is not covered
|
||||
"""
|
||||
device = src.device
|
||||
x = src
|
||||
T, B, C = x.shape
|
||||
if self.sparse and not self.auto_sparsity:
|
||||
assert src_mask is None
|
||||
src_mask = self.src_mask
|
||||
if src_mask.shape[-1] != T:
|
||||
src_mask = get_mask(
|
||||
T,
|
||||
T,
|
||||
self.mask_type,
|
||||
self.sparse_attn_window,
|
||||
self.global_window,
|
||||
self.mask_random_seed,
|
||||
self.sparsity,
|
||||
device,
|
||||
)
|
||||
self.__setattr__("src_mask", src_mask)
|
||||
|
||||
if self.norm_first:
|
||||
x = x + self.gamma_1(
|
||||
self._sa_block(self.norm1(x), src_mask, src_key_padding_mask)
|
||||
)
|
||||
x = x + self.gamma_2(self._ff_block(self.norm2(x)))
|
||||
|
||||
if self.norm_out:
|
||||
x = self.norm_out(x)
|
||||
else:
|
||||
x = self.norm1(
|
||||
x + self.gamma_1(self._sa_block(x, src_mask, src_key_padding_mask))
|
||||
)
|
||||
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class CrossTransformerEncoderLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation=F.relu,
|
||||
layer_norm_eps: float = 1e-5,
|
||||
layer_scale: bool = False,
|
||||
init_values: float = 1e-4,
|
||||
norm_first: bool = False,
|
||||
group_norm: bool = False,
|
||||
norm_out: bool = False,
|
||||
sparse=False,
|
||||
mask_type="diag",
|
||||
mask_random_seed=42,
|
||||
sparse_attn_window=500,
|
||||
global_window=50,
|
||||
sparsity=0.95,
|
||||
auto_sparsity=None,
|
||||
device=None,
|
||||
dtype=None,
|
||||
batch_first=False,
|
||||
):
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super().__init__()
|
||||
|
||||
self.sparse = sparse
|
||||
self.auto_sparsity = auto_sparsity
|
||||
if sparse:
|
||||
if not auto_sparsity:
|
||||
self.mask_type = mask_type
|
||||
self.sparse_attn_window = sparse_attn_window
|
||||
self.global_window = global_window
|
||||
self.sparsity = sparsity
|
||||
|
||||
self.cross_attn: nn.Module
|
||||
self.cross_attn = nn.MultiheadAttention(
|
||||
d_model, nhead, dropout=dropout, batch_first=batch_first)
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = nn.Linear(d_model, dim_feedforward, **factory_kwargs)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = nn.Linear(dim_feedforward, d_model, **factory_kwargs)
|
||||
|
||||
self.norm_first = norm_first
|
||||
self.norm1: nn.Module
|
||||
self.norm2: nn.Module
|
||||
self.norm3: nn.Module
|
||||
if group_norm:
|
||||
self.norm1 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm2 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm3 = MyGroupNorm(int(group_norm), d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
else:
|
||||
self.norm1 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm2 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
self.norm3 = nn.LayerNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
|
||||
self.norm_out = None
|
||||
if self.norm_first & norm_out:
|
||||
self.norm_out = MyGroupNorm(num_groups=int(norm_out), num_channels=d_model)
|
||||
|
||||
self.gamma_1 = (
|
||||
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
||||
)
|
||||
self.gamma_2 = (
|
||||
LayerScale(d_model, init_values, True) if layer_scale else nn.Identity()
|
||||
)
|
||||
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
# Legacy string support for activation function.
|
||||
if isinstance(activation, str):
|
||||
self.activation = self._get_activation_fn(activation)
|
||||
else:
|
||||
self.activation = activation
|
||||
|
||||
if sparse:
|
||||
self.cross_attn = MultiheadAttention(
|
||||
d_model, nhead, dropout=dropout, batch_first=batch_first,
|
||||
auto_sparsity=sparsity if auto_sparsity else 0)
|
||||
if not auto_sparsity:
|
||||
self.__setattr__("mask", torch.zeros(1, 1))
|
||||
self.mask_random_seed = mask_random_seed
|
||||
|
||||
def forward(self, q, k, mask=None):
|
||||
"""
|
||||
Args:
|
||||
q: tensor of shape (T, B, C)
|
||||
k: tensor of shape (S, B, C)
|
||||
mask: tensor of shape (T, S)
|
||||
|
||||
"""
|
||||
device = q.device
|
||||
T, B, C = q.shape
|
||||
S, B, C = k.shape
|
||||
if self.sparse and not self.auto_sparsity:
|
||||
assert mask is None
|
||||
mask = self.mask
|
||||
if mask.shape[-1] != S or mask.shape[-2] != T:
|
||||
mask = get_mask(
|
||||
S,
|
||||
T,
|
||||
self.mask_type,
|
||||
self.sparse_attn_window,
|
||||
self.global_window,
|
||||
self.mask_random_seed,
|
||||
self.sparsity,
|
||||
device,
|
||||
)
|
||||
self.__setattr__("mask", mask)
|
||||
|
||||
if self.norm_first:
|
||||
x = q + self.gamma_1(self._ca_block(self.norm1(q), self.norm2(k), mask))
|
||||
x = x + self.gamma_2(self._ff_block(self.norm3(x)))
|
||||
if self.norm_out:
|
||||
x = self.norm_out(x)
|
||||
else:
|
||||
x = self.norm1(q + self.gamma_1(self._ca_block(q, k, mask)))
|
||||
x = self.norm2(x + self.gamma_2(self._ff_block(x)))
|
||||
|
||||
return x
|
||||
|
||||
# self-attention block
|
||||
def _ca_block(self, q, k, attn_mask=None):
|
||||
x = self.cross_attn(q, k, k, attn_mask=attn_mask, need_weights=False)[0]
|
||||
return self.dropout1(x)
|
||||
|
||||
# feed forward block
|
||||
def _ff_block(self, x):
|
||||
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
||||
return self.dropout2(x)
|
||||
|
||||
def _get_activation_fn(self, activation):
|
||||
if activation == "relu":
|
||||
return F.relu
|
||||
elif activation == "gelu":
|
||||
return F.gelu
|
||||
|
||||
raise RuntimeError("activation should be relu/gelu, not {}".format(activation))
|
||||
|
||||
|
||||
# ----------------- MULTI-BLOCKS MODELS: -----------------------
|
||||
|
||||
|
||||
class CrossTransformerEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
emb: str = "sin",
|
||||
hidden_scale: float = 4.0,
|
||||
num_heads: int = 8,
|
||||
num_layers: int = 6,
|
||||
cross_first: bool = False,
|
||||
dropout: float = 0.0,
|
||||
max_positions: int = 1000,
|
||||
norm_in: bool = True,
|
||||
norm_in_group: bool = False,
|
||||
group_norm: int = False,
|
||||
norm_first: bool = False,
|
||||
norm_out: bool = False,
|
||||
max_period: float = 10000.0,
|
||||
weight_decay: float = 0.0,
|
||||
lr: tp.Optional[float] = None,
|
||||
layer_scale: bool = False,
|
||||
gelu: bool = True,
|
||||
sin_random_shift: int = 0,
|
||||
weight_pos_embed: float = 1.0,
|
||||
cape_mean_normalize: bool = True,
|
||||
cape_augment: bool = True,
|
||||
cape_glob_loc_scale: list = [5000.0, 1.0, 1.4],
|
||||
sparse_self_attn: bool = False,
|
||||
sparse_cross_attn: bool = False,
|
||||
mask_type: str = "diag",
|
||||
mask_random_seed: int = 42,
|
||||
sparse_attn_window: int = 500,
|
||||
global_window: int = 50,
|
||||
auto_sparsity: bool = False,
|
||||
sparsity: float = 0.95,
|
||||
):
|
||||
super().__init__()
|
||||
"""
|
||||
"""
|
||||
assert dim % num_heads == 0
|
||||
|
||||
hidden_dim = int(dim * hidden_scale)
|
||||
|
||||
self.num_layers = num_layers
|
||||
# classic parity = 1 means that if idx%2 == 1 there is a
|
||||
# classical encoder else there is a cross encoder
|
||||
self.classic_parity = 1 if cross_first else 0
|
||||
self.emb = emb
|
||||
self.max_period = max_period
|
||||
self.weight_decay = weight_decay
|
||||
self.weight_pos_embed = weight_pos_embed
|
||||
self.sin_random_shift = sin_random_shift
|
||||
if emb == "cape":
|
||||
self.cape_mean_normalize = cape_mean_normalize
|
||||
self.cape_augment = cape_augment
|
||||
self.cape_glob_loc_scale = cape_glob_loc_scale
|
||||
if emb == "scaled":
|
||||
self.position_embeddings = ScaledEmbedding(max_positions, dim, scale=0.2)
|
||||
|
||||
self.lr = lr
|
||||
|
||||
activation: tp.Any = F.gelu if gelu else F.relu
|
||||
|
||||
self.norm_in: nn.Module
|
||||
self.norm_in_t: nn.Module
|
||||
if norm_in:
|
||||
self.norm_in = nn.LayerNorm(dim)
|
||||
self.norm_in_t = nn.LayerNorm(dim)
|
||||
elif norm_in_group:
|
||||
self.norm_in = MyGroupNorm(int(norm_in_group), dim)
|
||||
self.norm_in_t = MyGroupNorm(int(norm_in_group), dim)
|
||||
else:
|
||||
self.norm_in = nn.Identity()
|
||||
self.norm_in_t = nn.Identity()
|
||||
|
||||
# spectrogram layers
|
||||
self.layers = nn.ModuleList()
|
||||
# temporal layers
|
||||
self.layers_t = nn.ModuleList()
|
||||
|
||||
kwargs_common = {
|
||||
"d_model": dim,
|
||||
"nhead": num_heads,
|
||||
"dim_feedforward": hidden_dim,
|
||||
"dropout": dropout,
|
||||
"activation": activation,
|
||||
"group_norm": group_norm,
|
||||
"norm_first": norm_first,
|
||||
"norm_out": norm_out,
|
||||
"layer_scale": layer_scale,
|
||||
"mask_type": mask_type,
|
||||
"mask_random_seed": mask_random_seed,
|
||||
"sparse_attn_window": sparse_attn_window,
|
||||
"global_window": global_window,
|
||||
"sparsity": sparsity,
|
||||
"auto_sparsity": auto_sparsity,
|
||||
"batch_first": True,
|
||||
}
|
||||
|
||||
kwargs_classic_encoder = dict(kwargs_common)
|
||||
kwargs_classic_encoder.update({
|
||||
"sparse": sparse_self_attn,
|
||||
})
|
||||
kwargs_cross_encoder = dict(kwargs_common)
|
||||
kwargs_cross_encoder.update({
|
||||
"sparse": sparse_cross_attn,
|
||||
})
|
||||
|
||||
for idx in range(num_layers):
|
||||
if idx % 2 == self.classic_parity:
|
||||
|
||||
self.layers.append(MyTransformerEncoderLayer(**kwargs_classic_encoder))
|
||||
self.layers_t.append(
|
||||
MyTransformerEncoderLayer(**kwargs_classic_encoder)
|
||||
)
|
||||
|
||||
else:
|
||||
self.layers.append(CrossTransformerEncoderLayer(**kwargs_cross_encoder))
|
||||
|
||||
self.layers_t.append(
|
||||
CrossTransformerEncoderLayer(**kwargs_cross_encoder)
|
||||
)
|
||||
|
||||
def forward(self, x, xt):
|
||||
B, C, Fr, T1 = x.shape
|
||||
pos_emb_2d = create_2d_sin_embedding(
|
||||
C, Fr, T1, x.device, self.max_period
|
||||
) # (1, C, Fr, T1)
|
||||
pos_emb_2d = rearrange(pos_emb_2d, "b c fr t1 -> b (t1 fr) c")
|
||||
x = rearrange(x, "b c fr t1 -> b (t1 fr) c")
|
||||
x = self.norm_in(x)
|
||||
x = x + self.weight_pos_embed * pos_emb_2d
|
||||
|
||||
B, C, T2 = xt.shape
|
||||
xt = rearrange(xt, "b c t2 -> b t2 c") # now T2, B, C
|
||||
pos_emb = self._get_pos_embedding(T2, B, C, x.device)
|
||||
pos_emb = rearrange(pos_emb, "t2 b c -> b t2 c")
|
||||
xt = self.norm_in_t(xt)
|
||||
xt = xt + self.weight_pos_embed * pos_emb
|
||||
|
||||
for idx in range(self.num_layers):
|
||||
if idx % 2 == self.classic_parity:
|
||||
x = self.layers[idx](x)
|
||||
xt = self.layers_t[idx](xt)
|
||||
else:
|
||||
old_x = x
|
||||
x = self.layers[idx](x, xt)
|
||||
xt = self.layers_t[idx](xt, old_x)
|
||||
|
||||
x = rearrange(x, "b (t1 fr) c -> b c fr t1", t1=T1)
|
||||
xt = rearrange(xt, "b t2 c -> b c t2")
|
||||
return x, xt
|
||||
|
||||
def _get_pos_embedding(self, T, B, C, device):
|
||||
if self.emb == "sin":
|
||||
shift = random.randrange(self.sin_random_shift + 1)
|
||||
pos_emb = create_sin_embedding(
|
||||
T, C, shift=shift, device=device, max_period=self.max_period
|
||||
)
|
||||
elif self.emb == "cape":
|
||||
if self.training:
|
||||
pos_emb = create_sin_embedding_cape(
|
||||
T,
|
||||
C,
|
||||
B,
|
||||
device=device,
|
||||
max_period=self.max_period,
|
||||
mean_normalize=self.cape_mean_normalize,
|
||||
augment=self.cape_augment,
|
||||
max_global_shift=self.cape_glob_loc_scale[0],
|
||||
max_local_shift=self.cape_glob_loc_scale[1],
|
||||
max_scale=self.cape_glob_loc_scale[2],
|
||||
)
|
||||
else:
|
||||
pos_emb = create_sin_embedding_cape(
|
||||
T,
|
||||
C,
|
||||
B,
|
||||
device=device,
|
||||
max_period=self.max_period,
|
||||
mean_normalize=self.cape_mean_normalize,
|
||||
augment=False,
|
||||
)
|
||||
|
||||
elif self.emb == "scaled":
|
||||
pos = torch.arange(T, device=device)
|
||||
pos_emb = self.position_embeddings(pos)[:, None]
|
||||
|
||||
return pos_emb
|
||||
|
||||
def make_optim_group(self):
|
||||
group = {"params": list(self.parameters()), "weight_decay": self.weight_decay}
|
||||
if self.lr is not None:
|
||||
group["lr"] = self.lr
|
||||
return group
|
||||
|
||||
|
||||
# Attention Modules
|
||||
|
||||
|
||||
class MultiheadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
auto_sparsity=None,
|
||||
):
|
||||
super().__init__()
|
||||
assert auto_sparsity is not None, "sanity check"
|
||||
self.num_heads = num_heads
|
||||
self.q = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
||||
self.k = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
||||
self.v = torch.nn.Linear(embed_dim, embed_dim, bias=bias)
|
||||
self.attn_drop = torch.nn.Dropout(dropout)
|
||||
self.proj = torch.nn.Linear(embed_dim, embed_dim, bias)
|
||||
self.proj_drop = torch.nn.Dropout(dropout)
|
||||
self.batch_first = batch_first
|
||||
self.auto_sparsity = auto_sparsity
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
key_padding_mask=None,
|
||||
need_weights=True,
|
||||
attn_mask=None,
|
||||
average_attn_weights=True,
|
||||
):
|
||||
|
||||
if not self.batch_first: # N, B, C
|
||||
query = query.permute(1, 0, 2) # B, N_q, C
|
||||
key = key.permute(1, 0, 2) # B, N_k, C
|
||||
value = value.permute(1, 0, 2) # B, N_k, C
|
||||
B, N_q, C = query.shape
|
||||
B, N_k, C = key.shape
|
||||
|
||||
q = (
|
||||
self.q(query)
|
||||
.reshape(B, N_q, self.num_heads, C // self.num_heads)
|
||||
.permute(0, 2, 1, 3)
|
||||
)
|
||||
q = q.flatten(0, 1)
|
||||
k = (
|
||||
self.k(key)
|
||||
.reshape(B, N_k, self.num_heads, C // self.num_heads)
|
||||
.permute(0, 2, 1, 3)
|
||||
)
|
||||
k = k.flatten(0, 1)
|
||||
v = (
|
||||
self.v(value)
|
||||
.reshape(B, N_k, self.num_heads, C // self.num_heads)
|
||||
.permute(0, 2, 1, 3)
|
||||
)
|
||||
v = v.flatten(0, 1)
|
||||
|
||||
if self.auto_sparsity:
|
||||
assert attn_mask is None
|
||||
x = dynamic_sparse_attention(q, k, v, sparsity=self.auto_sparsity)
|
||||
else:
|
||||
x = scaled_dot_product_attention(q, k, v, attn_mask, dropout=self.attn_drop)
|
||||
x = x.reshape(B, self.num_heads, N_q, C // self.num_heads)
|
||||
|
||||
x = x.transpose(1, 2).reshape(B, N_q, C)
|
||||
x = self.proj(x)
|
||||
x = self.proj_drop(x)
|
||||
if not self.batch_first:
|
||||
x = x.permute(1, 0, 2)
|
||||
return x, None
|
||||
|
||||
|
||||
def scaled_query_key_softmax(q, k, att_mask):
|
||||
from xformers.ops import masked_matmul
|
||||
q = q / (k.size(-1)) ** 0.5
|
||||
att = masked_matmul(q, k.transpose(-2, -1), att_mask)
|
||||
att = torch.nn.functional.softmax(att, -1)
|
||||
return att
|
||||
|
||||
|
||||
def scaled_dot_product_attention(q, k, v, att_mask, dropout):
|
||||
att = scaled_query_key_softmax(q, k, att_mask=att_mask)
|
||||
att = dropout(att)
|
||||
y = att @ v
|
||||
return y
|
||||
|
||||
|
||||
def _compute_buckets(x, R):
|
||||
qq = torch.einsum('btf,bfhi->bhti', x, R)
|
||||
qq = torch.cat([qq, -qq], dim=-1)
|
||||
buckets = qq.argmax(dim=-1)
|
||||
|
||||
return buckets.permute(0, 2, 1).byte().contiguous()
|
||||
|
||||
|
||||
def dynamic_sparse_attention(query, key, value, sparsity, infer_sparsity=True, attn_bias=None):
|
||||
# assert False, "The code for the custom sparse kernel is not ready for release yet."
|
||||
from xformers.ops import find_locations, sparse_memory_efficient_attention
|
||||
n_hashes = 32
|
||||
proj_size = 4
|
||||
query, key, value = [x.contiguous() for x in [query, key, value]]
|
||||
with torch.no_grad():
|
||||
R = torch.randn(1, query.shape[-1], n_hashes, proj_size // 2, device=query.device)
|
||||
bucket_query = _compute_buckets(query, R)
|
||||
bucket_key = _compute_buckets(key, R)
|
||||
row_offsets, column_indices = find_locations(
|
||||
bucket_query, bucket_key, sparsity, infer_sparsity)
|
||||
return sparse_memory_efficient_attention(
|
||||
query, key, value, row_offsets, column_indices, attn_bias)
|
||||
502
demucs/utils.py
Normal file
502
demucs/utils.py
Normal file
@@ -0,0 +1,502 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from collections import defaultdict
|
||||
from contextlib import contextmanager
|
||||
import math
|
||||
import os
|
||||
import tempfile
|
||||
import typing as tp
|
||||
|
||||
import errno
|
||||
import functools
|
||||
import hashlib
|
||||
import inspect
|
||||
import io
|
||||
import os
|
||||
import random
|
||||
import socket
|
||||
import tempfile
|
||||
import warnings
|
||||
import zlib
|
||||
import tkinter as tk
|
||||
|
||||
from diffq import UniformQuantizer, DiffQuantizer
|
||||
import torch as th
|
||||
import tqdm
|
||||
from torch import distributed
|
||||
from torch.nn import functional as F
|
||||
|
||||
import torch
|
||||
|
||||
def unfold(a, kernel_size, stride):
|
||||
"""Given input of size [*OT, T], output Tensor of size [*OT, F, K]
|
||||
with K the kernel size, by extracting frames with the given stride.
|
||||
|
||||
This will pad the input so that `F = ceil(T / K)`.
|
||||
|
||||
see https://github.com/pytorch/pytorch/issues/60466
|
||||
"""
|
||||
*shape, length = a.shape
|
||||
n_frames = math.ceil(length / stride)
|
||||
tgt_length = (n_frames - 1) * stride + kernel_size
|
||||
a = F.pad(a, (0, tgt_length - length))
|
||||
strides = list(a.stride())
|
||||
assert strides[-1] == 1, 'data should be contiguous'
|
||||
strides = strides[:-1] + [stride, 1]
|
||||
return a.as_strided([*shape, n_frames, kernel_size], strides)
|
||||
|
||||
|
||||
def center_trim(tensor: torch.Tensor, reference: tp.Union[torch.Tensor, int]):
|
||||
"""
|
||||
Center trim `tensor` with respect to `reference`, along the last dimension.
|
||||
`reference` can also be a number, representing the length to trim to.
|
||||
If the size difference != 0 mod 2, the extra sample is removed on the right side.
|
||||
"""
|
||||
ref_size: int
|
||||
if isinstance(reference, torch.Tensor):
|
||||
ref_size = reference.size(-1)
|
||||
else:
|
||||
ref_size = reference
|
||||
delta = tensor.size(-1) - ref_size
|
||||
if delta < 0:
|
||||
raise ValueError("tensor must be larger than reference. " f"Delta is {delta}.")
|
||||
if delta:
|
||||
tensor = tensor[..., delta // 2:-(delta - delta // 2)]
|
||||
return tensor
|
||||
|
||||
|
||||
def pull_metric(history: tp.List[dict], name: str):
|
||||
out = []
|
||||
for metrics in history:
|
||||
metric = metrics
|
||||
for part in name.split("."):
|
||||
metric = metric[part]
|
||||
out.append(metric)
|
||||
return out
|
||||
|
||||
|
||||
def EMA(beta: float = 1):
|
||||
"""
|
||||
Exponential Moving Average callback.
|
||||
Returns a single function that can be called to repeatidly update the EMA
|
||||
with a dict of metrics. The callback will return
|
||||
the new averaged dict of metrics.
|
||||
|
||||
Note that for `beta=1`, this is just plain averaging.
|
||||
"""
|
||||
fix: tp.Dict[str, float] = defaultdict(float)
|
||||
total: tp.Dict[str, float] = defaultdict(float)
|
||||
|
||||
def _update(metrics: dict, weight: float = 1) -> dict:
|
||||
nonlocal total, fix
|
||||
for key, value in metrics.items():
|
||||
total[key] = total[key] * beta + weight * float(value)
|
||||
fix[key] = fix[key] * beta + weight
|
||||
return {key: tot / fix[key] for key, tot in total.items()}
|
||||
return _update
|
||||
|
||||
|
||||
def sizeof_fmt(num: float, suffix: str = 'B'):
|
||||
"""
|
||||
Given `num` bytes, return human readable size.
|
||||
Taken from https://stackoverflow.com/a/1094933
|
||||
"""
|
||||
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
|
||||
if abs(num) < 1024.0:
|
||||
return "%3.1f%s%s" % (num, unit, suffix)
|
||||
num /= 1024.0
|
||||
return "%.1f%s%s" % (num, 'Yi', suffix)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def temp_filenames(count: int, delete=True):
|
||||
names = []
|
||||
try:
|
||||
for _ in range(count):
|
||||
names.append(tempfile.NamedTemporaryFile(delete=False).name)
|
||||
yield names
|
||||
finally:
|
||||
if delete:
|
||||
for name in names:
|
||||
os.unlink(name)
|
||||
|
||||
def average_metric(metric, count=1.):
|
||||
"""
|
||||
Average `metric` which should be a float across all hosts. `count` should be
|
||||
the weight for this particular host (i.e. number of examples).
|
||||
"""
|
||||
metric = th.tensor([count, count * metric], dtype=th.float32, device='cuda')
|
||||
distributed.all_reduce(metric, op=distributed.ReduceOp.SUM)
|
||||
return metric[1].item() / metric[0].item()
|
||||
|
||||
|
||||
def free_port(host='', low=20000, high=40000):
|
||||
"""
|
||||
Return a port number that is most likely free.
|
||||
This could suffer from a race condition although
|
||||
it should be quite rare.
|
||||
"""
|
||||
sock = socket.socket()
|
||||
while True:
|
||||
port = random.randint(low, high)
|
||||
try:
|
||||
sock.bind((host, port))
|
||||
except OSError as error:
|
||||
if error.errno == errno.EADDRINUSE:
|
||||
continue
|
||||
raise
|
||||
return port
|
||||
|
||||
|
||||
def sizeof_fmt(num, suffix='B'):
|
||||
"""
|
||||
Given `num` bytes, return human readable size.
|
||||
Taken from https://stackoverflow.com/a/1094933
|
||||
"""
|
||||
for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']:
|
||||
if abs(num) < 1024.0:
|
||||
return "%3.1f%s%s" % (num, unit, suffix)
|
||||
num /= 1024.0
|
||||
return "%.1f%s%s" % (num, 'Yi', suffix)
|
||||
|
||||
|
||||
def human_seconds(seconds, display='.2f'):
|
||||
"""
|
||||
Given `seconds` seconds, return human readable duration.
|
||||
"""
|
||||
value = seconds * 1e6
|
||||
ratios = [1e3, 1e3, 60, 60, 24]
|
||||
names = ['us', 'ms', 's', 'min', 'hrs', 'days']
|
||||
last = names.pop(0)
|
||||
for name, ratio in zip(names, ratios):
|
||||
if value / ratio < 0.3:
|
||||
break
|
||||
value /= ratio
|
||||
last = name
|
||||
return f"{format(value, display)} {last}"
|
||||
|
||||
|
||||
class TensorChunk:
|
||||
def __init__(self, tensor, offset=0, length=None):
|
||||
total_length = tensor.shape[-1]
|
||||
assert offset >= 0
|
||||
assert offset < total_length
|
||||
|
||||
if length is None:
|
||||
length = total_length - offset
|
||||
else:
|
||||
length = min(total_length - offset, length)
|
||||
|
||||
self.tensor = tensor
|
||||
self.offset = offset
|
||||
self.length = length
|
||||
self.device = tensor.device
|
||||
|
||||
@property
|
||||
def shape(self):
|
||||
shape = list(self.tensor.shape)
|
||||
shape[-1] = self.length
|
||||
return shape
|
||||
|
||||
def padded(self, target_length):
|
||||
delta = target_length - self.length
|
||||
total_length = self.tensor.shape[-1]
|
||||
assert delta >= 0
|
||||
|
||||
start = self.offset - delta // 2
|
||||
end = start + target_length
|
||||
|
||||
correct_start = max(0, start)
|
||||
correct_end = min(total_length, end)
|
||||
|
||||
pad_left = correct_start - start
|
||||
pad_right = end - correct_end
|
||||
|
||||
out = F.pad(self.tensor[..., correct_start:correct_end], (pad_left, pad_right))
|
||||
assert out.shape[-1] == target_length
|
||||
return out
|
||||
|
||||
|
||||
def tensor_chunk(tensor_or_chunk):
|
||||
if isinstance(tensor_or_chunk, TensorChunk):
|
||||
return tensor_or_chunk
|
||||
else:
|
||||
assert isinstance(tensor_or_chunk, th.Tensor)
|
||||
return TensorChunk(tensor_or_chunk)
|
||||
|
||||
|
||||
def apply_model_v1(model, mix, shifts=None, split=False, progress=False, set_progress_bar=None):
|
||||
"""
|
||||
Apply model to a given mixture.
|
||||
|
||||
Args:
|
||||
shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec
|
||||
and apply the oppositve shift to the output. This is repeated `shifts` time and
|
||||
all predictions are averaged. This effectively makes the model time equivariant
|
||||
and improves SDR by up to 0.2 points.
|
||||
split (bool): if True, the input will be broken down in 8 seconds extracts
|
||||
and predictions will be performed individually on each and concatenated.
|
||||
Useful for model with large memory footprint like Tasnet.
|
||||
progress (bool): if True, show a progress bar (requires split=True)
|
||||
"""
|
||||
|
||||
channels, length = mix.size()
|
||||
device = mix.device
|
||||
progress_value = 0
|
||||
|
||||
if split:
|
||||
out = th.zeros(4, channels, length, device=device)
|
||||
shift = model.samplerate * 10
|
||||
offsets = range(0, length, shift)
|
||||
scale = 10
|
||||
if progress:
|
||||
offsets = tqdm.tqdm(offsets, unit_scale=scale, ncols=120, unit='seconds')
|
||||
for offset in offsets:
|
||||
chunk = mix[..., offset:offset + shift]
|
||||
if set_progress_bar:
|
||||
progress_value += 1
|
||||
set_progress_bar(0.1, (0.8/len(offsets)*progress_value))
|
||||
chunk_out = apply_model_v1(model, chunk, shifts=shifts, set_progress_bar=set_progress_bar)
|
||||
else:
|
||||
chunk_out = apply_model_v1(model, chunk, shifts=shifts)
|
||||
out[..., offset:offset + shift] = chunk_out
|
||||
offset += shift
|
||||
return out
|
||||
elif shifts:
|
||||
max_shift = int(model.samplerate / 2)
|
||||
mix = F.pad(mix, (max_shift, max_shift))
|
||||
offsets = list(range(max_shift))
|
||||
random.shuffle(offsets)
|
||||
out = 0
|
||||
for offset in offsets[:shifts]:
|
||||
shifted = mix[..., offset:offset + length + max_shift]
|
||||
if set_progress_bar:
|
||||
shifted_out = apply_model_v1(model, shifted, set_progress_bar=set_progress_bar)
|
||||
else:
|
||||
shifted_out = apply_model_v1(model, shifted)
|
||||
out += shifted_out[..., max_shift - offset:max_shift - offset + length]
|
||||
out /= shifts
|
||||
return out
|
||||
else:
|
||||
valid_length = model.valid_length(length)
|
||||
delta = valid_length - length
|
||||
padded = F.pad(mix, (delta // 2, delta - delta // 2))
|
||||
with th.no_grad():
|
||||
out = model(padded.unsqueeze(0))[0]
|
||||
return center_trim(out, mix)
|
||||
|
||||
def apply_model_v2(model, mix, shifts=None, split=False,
|
||||
overlap=0.25, transition_power=1., progress=False, set_progress_bar=None):
|
||||
"""
|
||||
Apply model to a given mixture.
|
||||
|
||||
Args:
|
||||
shifts (int): if > 0, will shift in time `mix` by a random amount between 0 and 0.5 sec
|
||||
and apply the oppositve shift to the output. This is repeated `shifts` time and
|
||||
all predictions are averaged. This effectively makes the model time equivariant
|
||||
and improves SDR by up to 0.2 points.
|
||||
split (bool): if True, the input will be broken down in 8 seconds extracts
|
||||
and predictions will be performed individually on each and concatenated.
|
||||
Useful for model with large memory footprint like Tasnet.
|
||||
progress (bool): if True, show a progress bar (requires split=True)
|
||||
"""
|
||||
|
||||
assert transition_power >= 1, "transition_power < 1 leads to weird behavior."
|
||||
device = mix.device
|
||||
channels, length = mix.shape
|
||||
progress_value = 0
|
||||
|
||||
if split:
|
||||
out = th.zeros(len(model.sources), channels, length, device=device)
|
||||
sum_weight = th.zeros(length, device=device)
|
||||
segment = model.segment_length
|
||||
stride = int((1 - overlap) * segment)
|
||||
offsets = range(0, length, stride)
|
||||
scale = stride / model.samplerate
|
||||
if progress:
|
||||
offsets = tqdm.tqdm(offsets, unit_scale=scale, ncols=120, unit='seconds')
|
||||
# We start from a triangle shaped weight, with maximal weight in the middle
|
||||
# of the segment. Then we normalize and take to the power `transition_power`.
|
||||
# Large values of transition power will lead to sharper transitions.
|
||||
weight = th.cat([th.arange(1, segment // 2 + 1),
|
||||
th.arange(segment - segment // 2, 0, -1)]).to(device)
|
||||
assert len(weight) == segment
|
||||
# If the overlap < 50%, this will translate to linear transition when
|
||||
# transition_power is 1.
|
||||
weight = (weight / weight.max())**transition_power
|
||||
for offset in offsets:
|
||||
chunk = TensorChunk(mix, offset, segment)
|
||||
if set_progress_bar:
|
||||
progress_value += 1
|
||||
set_progress_bar(0.1, (0.8/len(offsets)*progress_value))
|
||||
chunk_out = apply_model_v2(model, chunk, shifts=shifts, set_progress_bar=set_progress_bar)
|
||||
else:
|
||||
chunk_out = apply_model_v2(model, chunk, shifts=shifts)
|
||||
chunk_length = chunk_out.shape[-1]
|
||||
out[..., offset:offset + segment] += weight[:chunk_length] * chunk_out
|
||||
sum_weight[offset:offset + segment] += weight[:chunk_length]
|
||||
offset += segment
|
||||
assert sum_weight.min() > 0
|
||||
out /= sum_weight
|
||||
return out
|
||||
elif shifts:
|
||||
max_shift = int(0.5 * model.samplerate)
|
||||
mix = tensor_chunk(mix)
|
||||
padded_mix = mix.padded(length + 2 * max_shift)
|
||||
out = 0
|
||||
for _ in range(shifts):
|
||||
offset = random.randint(0, max_shift)
|
||||
shifted = TensorChunk(padded_mix, offset, length + max_shift - offset)
|
||||
|
||||
if set_progress_bar:
|
||||
progress_value += 1
|
||||
shifted_out = apply_model_v2(model, shifted, set_progress_bar=set_progress_bar)
|
||||
else:
|
||||
shifted_out = apply_model_v2(model, shifted)
|
||||
out += shifted_out[..., max_shift - offset:]
|
||||
out /= shifts
|
||||
return out
|
||||
else:
|
||||
valid_length = model.valid_length(length)
|
||||
mix = tensor_chunk(mix)
|
||||
padded_mix = mix.padded(valid_length)
|
||||
with th.no_grad():
|
||||
out = model(padded_mix.unsqueeze(0))[0]
|
||||
return center_trim(out, length)
|
||||
|
||||
|
||||
@contextmanager
|
||||
def temp_filenames(count, delete=True):
|
||||
names = []
|
||||
try:
|
||||
for _ in range(count):
|
||||
names.append(tempfile.NamedTemporaryFile(delete=False).name)
|
||||
yield names
|
||||
finally:
|
||||
if delete:
|
||||
for name in names:
|
||||
os.unlink(name)
|
||||
|
||||
|
||||
def get_quantizer(model, args, optimizer=None):
|
||||
quantizer = None
|
||||
if args.diffq:
|
||||
quantizer = DiffQuantizer(
|
||||
model, min_size=args.q_min_size, group_size=8)
|
||||
if optimizer is not None:
|
||||
quantizer.setup_optimizer(optimizer)
|
||||
elif args.qat:
|
||||
quantizer = UniformQuantizer(
|
||||
model, bits=args.qat, min_size=args.q_min_size)
|
||||
return quantizer
|
||||
|
||||
|
||||
def load_model(path, strict=False):
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("ignore")
|
||||
load_from = path
|
||||
package = th.load(load_from, 'cpu')
|
||||
|
||||
klass = package["klass"]
|
||||
args = package["args"]
|
||||
kwargs = package["kwargs"]
|
||||
|
||||
if strict:
|
||||
model = klass(*args, **kwargs)
|
||||
else:
|
||||
sig = inspect.signature(klass)
|
||||
for key in list(kwargs):
|
||||
if key not in sig.parameters:
|
||||
warnings.warn("Dropping inexistant parameter " + key)
|
||||
del kwargs[key]
|
||||
model = klass(*args, **kwargs)
|
||||
|
||||
state = package["state"]
|
||||
training_args = package["training_args"]
|
||||
quantizer = get_quantizer(model, training_args)
|
||||
|
||||
set_state(model, quantizer, state)
|
||||
return model
|
||||
|
||||
|
||||
def get_state(model, quantizer):
|
||||
if quantizer is None:
|
||||
state = {k: p.data.to('cpu') for k, p in model.state_dict().items()}
|
||||
else:
|
||||
state = quantizer.get_quantized_state()
|
||||
buf = io.BytesIO()
|
||||
th.save(state, buf)
|
||||
state = {'compressed': zlib.compress(buf.getvalue())}
|
||||
return state
|
||||
|
||||
|
||||
def set_state(model, quantizer, state):
|
||||
if quantizer is None:
|
||||
model.load_state_dict(state)
|
||||
else:
|
||||
buf = io.BytesIO(zlib.decompress(state["compressed"]))
|
||||
state = th.load(buf, "cpu")
|
||||
quantizer.restore_quantized_state(state)
|
||||
|
||||
return state
|
||||
|
||||
|
||||
def save_state(state, path):
|
||||
buf = io.BytesIO()
|
||||
th.save(state, buf)
|
||||
sig = hashlib.sha256(buf.getvalue()).hexdigest()[:8]
|
||||
|
||||
path = path.parent / (path.stem + "-" + sig + path.suffix)
|
||||
path.write_bytes(buf.getvalue())
|
||||
|
||||
|
||||
def save_model(model, quantizer, training_args, path):
|
||||
args, kwargs = model._init_args_kwargs
|
||||
klass = model.__class__
|
||||
|
||||
state = get_state(model, quantizer)
|
||||
|
||||
save_to = path
|
||||
package = {
|
||||
'klass': klass,
|
||||
'args': args,
|
||||
'kwargs': kwargs,
|
||||
'state': state,
|
||||
'training_args': training_args,
|
||||
}
|
||||
th.save(package, save_to)
|
||||
|
||||
|
||||
def capture_init(init):
|
||||
@functools.wraps(init)
|
||||
def __init__(self, *args, **kwargs):
|
||||
self._init_args_kwargs = (args, kwargs)
|
||||
init(self, *args, **kwargs)
|
||||
|
||||
return __init__
|
||||
|
||||
class DummyPoolExecutor:
|
||||
class DummyResult:
|
||||
def __init__(self, func, *args, **kwargs):
|
||||
self.func = func
|
||||
self.args = args
|
||||
self.kwargs = kwargs
|
||||
|
||||
def result(self):
|
||||
return self.func(*self.args, **self.kwargs)
|
||||
|
||||
def __init__(self, workers=0):
|
||||
pass
|
||||
|
||||
def submit(self, func, *args, **kwargs):
|
||||
return DummyPoolExecutor.DummyResult(func, *args, **kwargs)
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_value, exc_tb):
|
||||
return
|
||||
Reference in New Issue
Block a user