Add files via upload

This commit is contained in:
Anjok07
2022-12-18 21:18:56 -06:00
committed by GitHub
parent 9f1652fdf3
commit a58c26520d
54 changed files with 14473 additions and 2 deletions

736
lib_v5/spec_utils.py Normal file
View File

@@ -0,0 +1,736 @@
import librosa
import numpy as np
import soundfile as sf
import math
import random
import pyrubberband
import math
#import noisereduce as nr
MAX_SPEC = 'Max Spec'
MIN_SPEC = 'Min Spec'
AVERAGE = 'Average'
def crop_center(h1, h2):
h1_shape = h1.size()
h2_shape = h2.size()
if h1_shape[3] == h2_shape[3]:
return h1
elif h1_shape[3] < h2_shape[3]:
raise ValueError('h1_shape[3] must be greater than h2_shape[3]')
# s_freq = (h2_shape[2] - h1_shape[2]) // 2
# e_freq = s_freq + h1_shape[2]
s_time = (h1_shape[3] - h2_shape[3]) // 2
e_time = s_time + h2_shape[3]
h1 = h1[:, :, :, s_time:e_time]
return h1
def preprocess(X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
def make_padding(width, cropsize, offset):
left = offset
roi_size = cropsize - offset * 2
if roi_size == 0:
roi_size = cropsize
right = roi_size - (width % roi_size) + left
return left, right, roi_size
def wave_to_spectrogram(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
if reverse:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mid_side:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mid_side_b2:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft, hop_length=hop_length)
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def wave_to_spectrogram_mt(wave, hop_length, n_fft, mid_side=False, mid_side_b2=False, reverse=False):
import threading
if reverse:
wave_left = np.flip(np.asfortranarray(wave[0]))
wave_right = np.flip(np.asfortranarray(wave[1]))
elif mid_side:
wave_left = np.asfortranarray(np.add(wave[0], wave[1]) / 2)
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1]))
elif mid_side_b2:
wave_left = np.asfortranarray(np.add(wave[1], wave[0] * .5))
wave_right = np.asfortranarray(np.subtract(wave[0], wave[1] * .5))
else:
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
def run_thread(**kwargs):
global spec_left
spec_left = librosa.stft(**kwargs)
thread = threading.Thread(target=run_thread, kwargs={'y': wave_left, 'n_fft': n_fft, 'hop_length': hop_length})
thread.start()
spec_right = librosa.stft(wave_right, n_fft, hop_length=hop_length)
thread.join()
spec = np.asfortranarray([spec_left, spec_right])
return spec
def normalize(wave, is_normalize=False):
"""Save output music files"""
maxv = np.abs(wave).max()
if maxv > 1.0:
print(f"\nNormalization Set {is_normalize}: Input above threshold for clipping. Max:{maxv}")
if is_normalize:
print(f"The result was normalized.")
wave /= maxv
else:
print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}")
return wave
def normalize_two_stem(wave, mix, is_normalize=False):
"""Save output music files"""
maxv = np.abs(wave).max()
max_mix = np.abs(mix).max()
if maxv > 1.0:
print(f"\nNormalization Set {is_normalize}: Primary source above threshold for clipping. The result was normalized. Max:{maxv}")
print(f"\nNormalization Set {is_normalize}: Mixture above threshold for clipping. The result was normalized. Max:{max_mix}")
if is_normalize:
wave /= maxv
mix /= maxv
else:
print(f"\nNormalization Set {is_normalize}: Input not above threshold for clipping. Max:{maxv}")
print(f"\nNormalization Set {is_normalize}: Primary source - Max:{np.abs(wave).max()}")
print(f"\nNormalization Set {is_normalize}: Mixture - Max:{np.abs(mix).max()}")
return wave, mix
def combine_spectrograms(specs, mp):
l = min([specs[i].shape[2] for i in specs])
spec_c = np.zeros(shape=(2, mp.param['bins'] + 1, l), dtype=np.complex64)
offset = 0
bands_n = len(mp.param['band'])
for d in range(1, bands_n + 1):
h = mp.param['band'][d]['crop_stop'] - mp.param['band'][d]['crop_start']
spec_c[:, offset:offset+h, :l] = specs[d][:, mp.param['band'][d]['crop_start']:mp.param['band'][d]['crop_stop'], :l]
offset += h
if offset > mp.param['bins']:
raise ValueError('Too much bins')
# lowpass fiter
if mp.param['pre_filter_start'] > 0: # and mp.param['band'][bands_n]['res_type'] in ['scipy', 'polyphase']:
if bands_n == 1:
spec_c = fft_lp_filter(spec_c, mp.param['pre_filter_start'], mp.param['pre_filter_stop'])
else:
gp = 1
for b in range(mp.param['pre_filter_start'] + 1, mp.param['pre_filter_stop']):
g = math.pow(10, -(b - mp.param['pre_filter_start']) * (3.5 - gp) / 20.0)
gp = g
spec_c[:, b, :] *= g
return np.asfortranarray(spec_c)
def spectrogram_to_image(spec, mode='magnitude'):
if mode == 'magnitude':
if np.iscomplexobj(spec):
y = np.abs(spec)
else:
y = spec
y = np.log10(y ** 2 + 1e-8)
elif mode == 'phase':
if np.iscomplexobj(spec):
y = np.angle(spec)
else:
y = spec
y -= y.min()
y *= 255 / y.max()
img = np.uint8(y)
if y.ndim == 3:
img = img.transpose(1, 2, 0)
img = np.concatenate([
np.max(img, axis=2, keepdims=True), img
], axis=2)
return img
def reduce_vocal_aggressively(X, y, softmask):
v = X - y
y_mag_tmp = np.abs(y)
v_mag_tmp = np.abs(v)
v_mask = v_mag_tmp > y_mag_tmp
y_mag = np.clip(y_mag_tmp - v_mag_tmp * v_mask * softmask, 0, np.inf)
return y_mag * np.exp(1.j * np.angle(y))
def merge_artifacts(y_mask, thres=0.05, min_range=64, fade_size=32):
if min_range < fade_size * 2:
raise ValueError('min_range must be >= fade_size * 2')
idx = np.where(y_mask.min(axis=(0, 1)) > thres)[0]
start_idx = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
end_idx = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
artifact_idx = np.where(end_idx - start_idx > min_range)[0]
weight = np.zeros_like(y_mask)
if len(artifact_idx) > 0:
start_idx = start_idx[artifact_idx]
end_idx = end_idx[artifact_idx]
old_e = None
for s, e in zip(start_idx, end_idx):
if old_e is not None and s - old_e < fade_size:
s = old_e - fade_size * 2
if s != 0:
weight[:, :, s:s + fade_size] = np.linspace(0, 1, fade_size)
else:
s -= fade_size
if e != y_mask.shape[2]:
weight[:, :, e - fade_size:e] = np.linspace(1, 0, fade_size)
else:
e += fade_size
weight[:, :, s + fade_size:e - fade_size] = 1
old_e = e
v_mask = 1 - y_mask
y_mask += weight * v_mask
return y_mask
def mask_silence(mag, ref, thres=0.2, min_range=64, fade_size=32):
if min_range < fade_size * 2:
raise ValueError('min_range must be >= fade_area * 2')
mag = mag.copy()
idx = np.where(ref.mean(axis=(0, 1)) < thres)[0]
starts = np.insert(idx[np.where(np.diff(idx) != 1)[0] + 1], 0, idx[0])
ends = np.append(idx[np.where(np.diff(idx) != 1)[0]], idx[-1])
uninformative = np.where(ends - starts > min_range)[0]
if len(uninformative) > 0:
starts = starts[uninformative]
ends = ends[uninformative]
old_e = None
for s, e in zip(starts, ends):
if old_e is not None and s - old_e < fade_size:
s = old_e - fade_size * 2
if s != 0:
weight = np.linspace(0, 1, fade_size)
mag[:, :, s:s + fade_size] += weight * ref[:, :, s:s + fade_size]
else:
s -= fade_size
if e != mag.shape[2]:
weight = np.linspace(1, 0, fade_size)
mag[:, :, e - fade_size:e] += weight * ref[:, :, e - fade_size:e]
else:
e += fade_size
mag[:, :, s + fade_size:e - fade_size] += ref[:, :, s + fade_size:e - fade_size]
old_e = e
return mag
def align_wave_head_and_tail(a, b):
l = min([a[0].size, b[0].size])
return a[:l,:l], b[:l,:l]
def spectrogram_to_wave(spec, hop_length, mid_side, mid_side_b2, reverse, clamp=False):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
if reverse:
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mid_side:
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif mid_side_b2:
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
else:
return np.asfortranarray([wave_left, wave_right])
def spectrogram_to_wave_mt(spec, hop_length, mid_side, reverse, mid_side_b2):
import threading
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
def run_thread(**kwargs):
global wave_left
wave_left = librosa.istft(**kwargs)
thread = threading.Thread(target=run_thread, kwargs={'stft_matrix': spec_left, 'hop_length': hop_length})
thread.start()
wave_right = librosa.istft(spec_right, hop_length=hop_length)
thread.join()
if reverse:
return np.asfortranarray([np.flip(wave_left), np.flip(wave_right)])
elif mid_side:
return np.asfortranarray([np.add(wave_left, wave_right / 2), np.subtract(wave_left, wave_right / 2)])
elif mid_side_b2:
return np.asfortranarray([np.add(wave_right / 1.25, .4 * wave_left), np.subtract(wave_left / 1.25, .4 * wave_right)])
else:
return np.asfortranarray([wave_left, wave_right])
def cmb_spectrogram_to_wave(spec_m, mp, extra_bins_h=None, extra_bins=None):
bands_n = len(mp.param['band'])
offset = 0
for d in range(1, bands_n + 1):
bp = mp.param['band'][d]
spec_s = np.ndarray(shape=(2, bp['n_fft'] // 2 + 1, spec_m.shape[2]), dtype=complex)
h = bp['crop_stop'] - bp['crop_start']
spec_s[:, bp['crop_start']:bp['crop_stop'], :] = spec_m[:, offset:offset+h, :]
offset += h
if d == bands_n: # higher
if extra_bins_h: # if --high_end_process bypass
max_bin = bp['n_fft'] // 2
spec_s[:, max_bin-extra_bins_h:max_bin, :] = extra_bins[:, :extra_bins_h, :]
if bp['hpf_start'] > 0:
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
if bands_n == 1:
wave = spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse'])
else:
wave = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
else:
sr = mp.param['band'][d+1]['sr']
if d == 1: # lower
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
wave = librosa.resample(spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']), bp['sr'], sr, res_type="sinc_fastest")
else: # mid
spec_s = fft_hp_filter(spec_s, bp['hpf_start'], bp['hpf_stop'] - 1)
spec_s = fft_lp_filter(spec_s, bp['lpf_start'], bp['lpf_stop'])
wave2 = np.add(wave, spectrogram_to_wave(spec_s, bp['hl'], mp.param['mid_side'], mp.param['mid_side_b2'], mp.param['reverse']))
wave = librosa.resample(wave2, bp['sr'], sr, res_type="sinc_fastest")
return wave
def fft_lp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop):
g -= 1 / (bin_stop - bin_start)
spec[:, b, :] = g * spec[:, b, :]
spec[:, bin_stop:, :] *= 0
return spec
def fft_hp_filter(spec, bin_start, bin_stop):
g = 1.0
for b in range(bin_start, bin_stop, -1):
g -= 1 / (bin_start - bin_stop)
spec[:, b, :] = g * spec[:, b, :]
spec[:, 0:bin_stop+1, :] *= 0
return spec
def mirroring(a, spec_m, input_high_end, mp):
if 'mirroring' == a:
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
mirror = mirror * np.exp(1.j * np.angle(input_high_end))
return np.where(np.abs(input_high_end) <= np.abs(mirror), input_high_end, mirror)
if 'mirroring2' == a:
mirror = np.flip(np.abs(spec_m[:, mp.param['pre_filter_start']-10-input_high_end.shape[1]:mp.param['pre_filter_start']-10, :]), 1)
mi = np.multiply(mirror, input_high_end * 1.7)
return np.where(np.abs(input_high_end) <= np.abs(mi), input_high_end, mi)
def adjust_aggr(mask, is_vocal_model, aggressiveness):
aggr = aggressiveness.get('value', 0.0) * 4
if aggr != 0:
if is_vocal_model:
aggr = 1 - aggr
aggr = [aggr, aggr]
if aggressiveness['aggr_correction'] is not None:
aggr[0] += aggressiveness['aggr_correction']['left']
aggr[1] += aggressiveness['aggr_correction']['right']
for ch in range(2):
mask[ch, :aggressiveness['split_bin']] = np.power(mask[ch, :aggressiveness['split_bin']], 1 + aggr[ch] / 3)
mask[ch, aggressiveness['split_bin']:] = np.power(mask[ch, aggressiveness['split_bin']:], 1 + aggr[ch])
return mask
def stft(wave, nfft, hl):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, nfft, hop_length=hl)
spec_right = librosa.stft(wave_right, nfft, hop_length=hl)
spec = np.asfortranarray([spec_left, spec_right])
return spec
def istft(spec, hl):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hl)
wave_right = librosa.istft(spec_right, hop_length=hl)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def spec_effects(wave, algorithm='Default', value=None):
spec = [stft(wave[0],2048,1024), stft(wave[1],2048,1024)]
if algorithm == 'Min_Mag':
v_spec_m = np.where(np.abs(spec[1]) <= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m,1024)
elif algorithm == 'Max_Mag':
v_spec_m = np.where(np.abs(spec[1]) >= np.abs(spec[0]), spec[1], spec[0])
wave = istft(v_spec_m,1024)
elif algorithm == 'Default':
wave = (wave[1] * value) + (wave[0] * (1-value))
elif algorithm == 'Invert_p':
X_mag = np.abs(spec[0])
y_mag = np.abs(spec[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = spec[1] - max_mag * np.exp(1.j * np.angle(spec[0]))
wave = istft(v_spec,1024)
return wave
def spectrogram_to_wave_bare(spec, hop_length=1024):
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def spectrogram_to_wave_no_mp(spec, hop_length=1024):
if spec.ndim == 2:
wave = librosa.istft(spec, hop_length=hop_length)
elif spec.ndim == 3:
spec_left = np.asfortranarray(spec[0])
spec_right = np.asfortranarray(spec[1])
wave_left = librosa.istft(spec_left, hop_length=hop_length)
wave_right = librosa.istft(spec_right, hop_length=hop_length)
wave = np.asfortranarray([wave_left, wave_right])
return wave
def wave_to_spectrogram_no_mp(wave):
wave_left = np.asfortranarray(wave[0])
wave_right = np.asfortranarray(wave[1])
spec_left = librosa.stft(wave_left, n_fft=2048, hop_length=1024)
spec_right = librosa.stft(wave_right, n_fft=2048, hop_length=1024)
spec = np.asfortranarray([spec_left, spec_right])
return spec
# def noise_reduction(audio_file):
# noise_pro = 'noise_pro.wav'
# wav, sr = librosa.load(audio_file, sr=44100, mono=False)
# wav_noise, noise_rate = librosa.load(noise_pro, sr=44100, mono=False)
# if wav.ndim == 1:
# wav = np.asfortranarray([wav,wav])
# wav_1 = nr.reduce_noise(audio_clip=wav[0], noise_clip=wav_noise, verbose=True)
# wav_2 = nr.reduce_noise(audio_clip=wav[1], noise_clip=wav_noise, verbose=True)
# if wav_1.shape > wav_2.shape:
# wav_2 = to_shape(wav_2, wav_1.shape)
# if wav_1.shape < wav_2.shape:
# wav_1 = to_shape(wav_1, wav_2.shape)
# #print('wav_1.shape: ', wav_1.shape)
# wav_mix = np.asfortranarray([wav_1, wav_2])
# return wav_mix, sr
def invert_audio(specs, invert_p=True):
ln = min([specs[0].shape[2], specs[1].shape[2]])
specs[0] = specs[0][:,:,:ln]
specs[1] = specs[1][:,:,:ln]
if invert_p:
X_mag = np.abs(specs[0])
y_mag = np.abs(specs[1])
max_mag = np.where(X_mag >= y_mag, X_mag, y_mag)
v_spec = specs[1] - max_mag * np.exp(1.j * np.angle(specs[0]))
else:
specs[1] = reduce_vocal_aggressively(specs[0], specs[1], 0.2)
v_spec = specs[0] - specs[1]
return v_spec
def invert_stem(mixture, stem):
mixture = wave_to_spectrogram_no_mp(mixture)
stem = wave_to_spectrogram_no_mp(stem)
output = spectrogram_to_wave_no_mp(invert_audio([mixture, stem]))
return -output.T
def ensembling(a, specs):
for i in range(1, len(specs)):
if i == 1:
spec = specs[0]
ln = min([spec.shape[2], specs[i].shape[2]])
spec = spec[:,:,:ln]
specs[i] = specs[i][:,:,:ln]
#print('spec: ', a)
if MIN_SPEC == a:
spec = np.where(np.abs(specs[i]) <= np.abs(spec), specs[i], spec)
if MAX_SPEC == a:
spec = np.where(np.abs(specs[i]) >= np.abs(spec), specs[i], spec)
if AVERAGE == a:
spec = np.where(np.abs(specs[i]) == np.abs(spec), specs[i], spec)
return spec
def ensemble_inputs(audio_input, algorithm, is_normalization, wav_type_set, save_path):
#print(algorithm)
if algorithm == AVERAGE:
output = average_audio(audio_input)
samplerate = 44100
else:
specs = []
for i in range(len(audio_input)):
wave, samplerate = librosa.load(audio_input[i], mono=False, sr=44100)
spec = wave_to_spectrogram_no_mp(wave)
specs.append(spec)
#print('output size: ', sys.getsizeof(spec))
#print('output size: ', sys.getsizeof(specs))
output = spectrogram_to_wave_no_mp(ensembling(algorithm, specs))
sf.write(save_path, normalize(output.T, is_normalization), samplerate, subtype=wav_type_set)
def to_shape(x, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
pad_value = (target_dim - x_dim)
pad_tuple = ((0, pad_value))
padding_list.append(pad_tuple)
return np.pad(x, tuple(padding_list), mode='constant')
def to_shape_minimize(x: np.ndarray, target_shape):
padding_list = []
for x_dim, target_dim in zip(x.shape, target_shape):
pad_value = (target_dim - x_dim)
pad_tuple = ((0, pad_value))
padding_list.append(pad_tuple)
return np.pad(x, tuple(padding_list), mode='constant')
def augment_audio(export_path, audio_file, rate, is_normalization, wav_type_set, save_format=None, is_pitch=False):
#print(rate)
wav, sr = librosa.load(audio_file, sr=44100, mono=False)
if wav.ndim == 1:
wav = np.asfortranarray([wav,wav])
if is_pitch:
wav_1 = pyrubberband.pyrb.pitch_shift(wav[0], sr, rate, rbargs=None)
wav_2 = pyrubberband.pyrb.pitch_shift(wav[1], sr, rate, rbargs=None)
else:
wav_1 = pyrubberband.pyrb.time_stretch(wav[0], sr, rate, rbargs=None)
wav_2 = pyrubberband.pyrb.time_stretch(wav[1], sr, rate, rbargs=None)
if wav_1.shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
wav_1 = to_shape(wav_1, wav_2.shape)
wav_mix = np.asfortranarray([wav_1, wav_2])
sf.write(export_path, normalize(wav_mix.T, is_normalization), sr, subtype=wav_type_set)
save_format(export_path)
def average_audio(audio):
waves = []
wave_shapes = []
final_waves = []
for i in range(len(audio)):
wave = librosa.load(audio[i], sr=44100, mono=False)
waves.append(wave[0])
wave_shapes.append(wave[0].shape[1])
wave_shapes_index = wave_shapes.index(max(wave_shapes))
target_shape = waves[wave_shapes_index]
waves.pop(wave_shapes_index)
final_waves.append(target_shape)
for n_array in waves:
wav_target = to_shape(n_array, target_shape.shape)
final_waves.append(wav_target)
waves = sum(final_waves)
waves = waves/len(audio)
return waves
def average_dual_sources(wav_1, wav_2, value):
if wav_1.shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
wav_1 = to_shape(wav_1, wav_2.shape)
wave = (wav_1 * value) + (wav_2 * (1-value))
return wave
def reshape_sources(wav_1: np.ndarray, wav_2: np.ndarray):
if wav_1.shape > wav_2.shape:
wav_2 = to_shape(wav_2, wav_1.shape)
if wav_1.shape < wav_2.shape:
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_2 = wav_2[:,:ln]
ln = min([wav_1.shape[1], wav_2.shape[1]])
wav_1 = wav_1[:,:ln]
wav_2 = wav_2[:,:ln]
return wav_2
def align_audio(file1, file2, file2_aligned, file_subtracted, wav_type_set, is_normalization, command_Text, progress_bar_main_var, save_format):
def get_diff(a, b):
corr = np.correlate(a, b, "full")
diff = corr.argmax() - (b.shape[0] - 1)
return diff
progress_bar_main_var.set(10)
# read tracks
wav1, sr1 = librosa.load(file1, sr=44100, mono=False)
wav2, sr2 = librosa.load(file2, sr=44100, mono=False)
wav1 = wav1.transpose()
wav2 = wav2.transpose()
command_Text(f"Audio file shapes: {wav1.shape} / {wav2.shape}\n")
wav2_org = wav2.copy()
progress_bar_main_var.set(20)
command_Text("Processing files... \n")
# pick random position and get diff
counts = {} # counting up for each diff value
progress = 20
check_range = 64
base = (64 / check_range)
for i in range(check_range):
index = int(random.uniform(44100 * 2, min(wav1.shape[0], wav2.shape[0]) - 44100 * 2))
shift = int(random.uniform(-22050,+22050))
samp1 = wav1[index :index +44100, 0] # currently use left channel
samp2 = wav2[index+shift:index+shift+44100, 0]
progress += 1 * base
progress_bar_main_var.set(progress)
diff = get_diff(samp1, samp2)
diff -= shift
if abs(diff) < 22050:
if not diff in counts:
counts[diff] = 0
counts[diff] += 1
# use max counted diff value
max_count = 0
est_diff = 0
for diff in counts.keys():
if counts[diff] > max_count:
max_count = counts[diff]
est_diff = diff
command_Text(f"Estimated difference is {est_diff} (count: {max_count})\n")
progress_bar_main_var.set(90)
audio_files = []
def save_aligned_audio(wav2_aligned):
command_Text(f"Aligned File 2 with File 1.\n")
command_Text(f"Saving files... ")
sf.write(file2_aligned, normalize(wav2_aligned, is_normalization), sr2, subtype=wav_type_set)
save_format(file2_aligned)
min_len = min(wav1.shape[0], wav2_aligned.shape[0])
wav_sub = wav1[:min_len] - wav2_aligned[:min_len]
audio_files.append(file2_aligned)
return min_len, wav_sub
# make aligned track 2
if est_diff > 0:
wav2_aligned = np.append(np.zeros((est_diff, 2)), wav2_org, axis=0)
min_len, wav_sub = save_aligned_audio(wav2_aligned)
elif est_diff < 0:
wav2_aligned = wav2_org[-est_diff:]
min_len, wav_sub = save_aligned_audio(wav2_aligned)
else:
command_Text(f"Audio files already aligned.\n")
command_Text(f"Saving inverted track... ")
min_len = min(wav1.shape[0], wav2.shape[0])
wav_sub = wav1[:min_len] - wav2[:min_len]
wav_sub = np.clip(wav_sub, -1, +1)
sf.write(file_subtracted, normalize(wav_sub, is_normalization), sr1, subtype=wav_type_set)
save_format(file_subtracted)
progress_bar_main_var.set(95)

View File

@@ -0,0 +1 @@
# VR init.

143
lib_v5/vr_network/layers.py Normal file
View File

@@ -0,0 +1,143 @@
import torch
from torch import nn
import torch.nn.functional as F
from lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class SeperableConv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(SeperableConv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nin,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
groups=nin,
bias=False),
nn.Conv2d(
nin, nout,
kernel_size=1,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
def __call__(self, x):
skip = self.conv1(x)
h = self.conv2(skip)
return h, skip
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
super(Decoder, self).__init__()
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
h = self.conv(x)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nn_architecture, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
)
self.nn_architecture = nn_architecture
self.six_layer = [129605]
self.seven_layer = [537238, 537227, 33966]
extra_conv = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
self.conv3 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
self.conv4 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
self.conv5 = SeperableConv2DBNActiv(
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
if self.nn_architecture in self.six_layer:
self.conv6 = extra_conv
nin_x = 6
elif self.nn_architecture in self.seven_layer:
self.conv6 = extra_conv
self.conv7 = extra_conv
nin_x = 7
else:
nin_x = 5
self.bottleneck = nn.Sequential(
Conv2DBNActiv(nin * nin_x, nout, 1, 1, 0, activ=activ),
nn.Dropout2d(0.1)
)
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
if self.nn_architecture in self.six_layer:
feat6 = self.conv6(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6), dim=1)
elif self.nn_architecture in self.seven_layer:
feat6 = self.conv6(x)
feat7 = self.conv7(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
else:
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
bottle = self.bottleneck(out)
return bottle

View File

@@ -0,0 +1,126 @@
import torch
from torch import nn
import torch.nn.functional as F
from lib_v5 import spec_utils
class Conv2DBNActiv(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
super(Conv2DBNActiv, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(
nin, nout,
kernel_size=ksize,
stride=stride,
padding=pad,
dilation=dilation,
bias=False),
nn.BatchNorm2d(nout),
activ()
)
def __call__(self, x):
return self.conv(x)
class Encoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
super(Encoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
def __call__(self, x):
h = self.conv1(x)
h = self.conv2(h)
return h
class Decoder(nn.Module):
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
super(Decoder, self).__init__()
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
# self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def __call__(self, x, skip=None):
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
if skip is not None:
skip = spec_utils.crop_center(skip, x)
x = torch.cat([x, skip], dim=1)
h = self.conv1(x)
# h = self.conv2(h)
if self.dropout is not None:
h = self.dropout(h)
return h
class ASPPModule(nn.Module):
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
super(ASPPModule, self).__init__()
self.conv1 = nn.Sequential(
nn.AdaptiveAvgPool2d((1, None)),
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
)
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
self.conv3 = Conv2DBNActiv(
nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
)
self.conv4 = Conv2DBNActiv(
nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
)
self.conv5 = Conv2DBNActiv(
nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
)
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
self.dropout = nn.Dropout2d(0.1) if dropout else None
def forward(self, x):
_, _, h, w = x.size()
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
feat2 = self.conv2(x)
feat3 = self.conv3(x)
feat4 = self.conv4(x)
feat5 = self.conv5(x)
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
out = self.bottleneck(out)
if self.dropout is not None:
out = self.dropout(out)
return out
class LSTMModule(nn.Module):
def __init__(self, nin_conv, nin_lstm, nout_lstm):
super(LSTMModule, self).__init__()
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
self.lstm = nn.LSTM(
input_size=nin_lstm,
hidden_size=nout_lstm // 2,
bidirectional=True
)
self.dense = nn.Sequential(
nn.Linear(nout_lstm, nin_lstm),
nn.BatchNorm1d(nin_lstm),
nn.ReLU()
)
def forward(self, x):
N, _, nbins, nframes = x.size()
h = self.conv(x)[:, 0] # N, nbins, nframes
h = h.permute(2, 0, 1) # nframes, N, nbins
h, _ = self.lstm(h)
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
h = h.reshape(nframes, N, 1, nbins)
h = h.permute(1, 2, 3, 0)
return h

View File

@@ -0,0 +1,59 @@
import json
import pathlib
default_param = {}
default_param['bins'] = 768
default_param['unstable_bins'] = 9 # training only
default_param['reduction_bins'] = 762 # training only
default_param['sr'] = 44100
default_param['pre_filter_start'] = 757
default_param['pre_filter_stop'] = 768
default_param['band'] = {}
default_param['band'][1] = {
'sr': 11025,
'hl': 128,
'n_fft': 960,
'crop_start': 0,
'crop_stop': 245,
'lpf_start': 61, # inference only
'res_type': 'polyphase'
}
default_param['band'][2] = {
'sr': 44100,
'hl': 512,
'n_fft': 1536,
'crop_start': 24,
'crop_stop': 547,
'hpf_start': 81, # inference only
'res_type': 'sinc_best'
}
def int_keys(d):
r = {}
for k, v in d:
if k.isdigit():
k = int(k)
r[k] = v
return r
class ModelParameters(object):
def __init__(self, config_path=''):
if '.pth' == pathlib.Path(config_path).suffix:
import zipfile
with zipfile.ZipFile(config_path, 'r') as zip:
self.param = json.loads(zip.read('param.json'), object_pairs_hook=int_keys)
elif '.json' == pathlib.Path(config_path).suffix:
with open(config_path, 'r') as f:
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
else:
self.param = default_param
for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
if not k in self.param:
self.param[k] = False

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 16000,
"hl": 512,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 16000,
"pre_filter_start": 1023,
"pre_filter_stop": 1024
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 32000,
"hl": 512,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "kaiser_fast"
}
},
"sr": 32000,
"pre_filter_start": 1000,
"pre_filter_stop": 1021
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 33075,
"hl": 384,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 33075,
"pre_filter_start": 1000,
"pre_filter_stop": 1021
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 44100,
"hl": 1024,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 44100,
"pre_filter_start": 1023,
"pre_filter_stop": 1024
}

View File

@@ -0,0 +1,19 @@
{
"bins": 256,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 44100,
"hl": 256,
"n_fft": 512,
"crop_start": 0,
"crop_stop": 256,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 44100,
"pre_filter_start": 256,
"pre_filter_stop": 256
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 44100,
"hl": 512,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 44100,
"pre_filter_start": 1023,
"pre_filter_stop": 1024
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 44100,
"hl": 512,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 700,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 44100,
"pre_filter_start": 1023,
"pre_filter_stop": 700
}

View File

@@ -0,0 +1,19 @@
{
"bins": 1024,
"unstable_bins": 0,
"reduction_bins": 0,
"band": {
"1": {
"sr": 44100,
"hl": 512,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 1024,
"hpf_start": -1,
"res_type": "sinc_best"
}
},
"sr": 44100,
"pre_filter_start": 1023,
"pre_filter_stop": 1024
}

View File

@@ -0,0 +1,30 @@
{
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 705,
"band": {
"1": {
"sr": 6000,
"hl": 66,
"n_fft": 512,
"crop_start": 0,
"crop_stop": 240,
"lpf_start": 60,
"lpf_stop": 118,
"res_type": "sinc_fastest"
},
"2": {
"sr": 32000,
"hl": 352,
"n_fft": 1024,
"crop_start": 22,
"crop_stop": 505,
"hpf_start": 44,
"hpf_stop": 23,
"res_type": "sinc_medium"
}
},
"sr": 32000,
"pre_filter_start": 710,
"pre_filter_stop": 731
}

View File

@@ -0,0 +1,30 @@
{
"bins": 512,
"unstable_bins": 7,
"reduction_bins": 510,
"band": {
"1": {
"sr": 11025,
"hl": 160,
"n_fft": 768,
"crop_start": 0,
"crop_stop": 192,
"lpf_start": 41,
"lpf_stop": 139,
"res_type": "sinc_fastest"
},
"2": {
"sr": 44100,
"hl": 640,
"n_fft": 1024,
"crop_start": 10,
"crop_stop": 320,
"hpf_start": 47,
"hpf_stop": 15,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 510,
"pre_filter_stop": 512
}

View File

@@ -0,0 +1,30 @@
{
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 705,
"band": {
"1": {
"sr": 6000,
"hl": 66,
"n_fft": 512,
"crop_start": 0,
"crop_stop": 240,
"lpf_start": 60,
"lpf_stop": 240,
"res_type": "sinc_fastest"
},
"2": {
"sr": 48000,
"hl": 528,
"n_fft": 1536,
"crop_start": 22,
"crop_stop": 505,
"hpf_start": 82,
"hpf_stop": 22,
"res_type": "sinc_medium"
}
},
"sr": 48000,
"pre_filter_start": 710,
"pre_filter_stop": 731
}

View File

@@ -0,0 +1,42 @@
{
"bins": 768,
"unstable_bins": 5,
"reduction_bins": 733,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 768,
"crop_start": 0,
"crop_stop": 278,
"lpf_start": 28,
"lpf_stop": 140,
"res_type": "polyphase"
},
"2": {
"sr": 22050,
"hl": 256,
"n_fft": 768,
"crop_start": 14,
"crop_stop": 322,
"hpf_start": 70,
"hpf_stop": 14,
"lpf_start": 283,
"lpf_stop": 314,
"res_type": "polyphase"
},
"3": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 131,
"crop_stop": 313,
"hpf_start": 154,
"hpf_stop": 141,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 757,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,43 @@
{
"mid_side": true,
"bins": 768,
"unstable_bins": 5,
"reduction_bins": 733,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 768,
"crop_start": 0,
"crop_stop": 278,
"lpf_start": 28,
"lpf_stop": 140,
"res_type": "polyphase"
},
"2": {
"sr": 22050,
"hl": 256,
"n_fft": 768,
"crop_start": 14,
"crop_stop": 322,
"hpf_start": 70,
"hpf_stop": 14,
"lpf_start": 283,
"lpf_stop": 314,
"res_type": "polyphase"
},
"3": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 131,
"crop_stop": 313,
"hpf_start": 154,
"hpf_stop": 141,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 757,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,43 @@
{
"mid_side_b2": true,
"bins": 640,
"unstable_bins": 7,
"reduction_bins": 565,
"band": {
"1": {
"sr": 11025,
"hl": 108,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 187,
"lpf_start": 92,
"lpf_stop": 186,
"res_type": "polyphase"
},
"2": {
"sr": 22050,
"hl": 216,
"n_fft": 768,
"crop_start": 0,
"crop_stop": 212,
"hpf_start": 68,
"hpf_stop": 34,
"lpf_start": 174,
"lpf_stop": 209,
"res_type": "polyphase"
},
"3": {
"sr": 44100,
"hl": 432,
"n_fft": 640,
"crop_start": 66,
"crop_stop": 307,
"hpf_start": 86,
"hpf_stop": 72,
"res_type": "kaiser_fast"
}
},
"sr": 44100,
"pre_filter_start": 639,
"pre_filter_stop": 640
}

View File

@@ -0,0 +1,54 @@
{
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"bins": 768,
"unstable_bins": 7,
"mid_side": true,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"mid_side_b": true,
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"mid_side_b": true,
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"reverse": true,
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,55 @@
{
"stereo_w": true,
"bins": 768,
"unstable_bins": 7,
"reduction_bins": 668,
"band": {
"1": {
"sr": 11025,
"hl": 128,
"n_fft": 1024,
"crop_start": 0,
"crop_stop": 186,
"lpf_start": 37,
"lpf_stop": 73,
"res_type": "polyphase"
},
"2": {
"sr": 11025,
"hl": 128,
"n_fft": 512,
"crop_start": 4,
"crop_stop": 185,
"hpf_start": 36,
"hpf_stop": 18,
"lpf_start": 93,
"lpf_stop": 185,
"res_type": "polyphase"
},
"3": {
"sr": 22050,
"hl": 256,
"n_fft": 512,
"crop_start": 46,
"crop_stop": 186,
"hpf_start": 93,
"hpf_stop": 46,
"lpf_start": 164,
"lpf_stop": 186,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 512,
"n_fft": 768,
"crop_start": 121,
"crop_stop": 382,
"hpf_start": 138,
"hpf_stop": 123,
"res_type": "sinc_medium"
}
},
"sr": 44100,
"pre_filter_start": 740,
"pre_filter_stop": 768
}

View File

@@ -0,0 +1,54 @@
{
"bins": 672,
"unstable_bins": 8,
"reduction_bins": 637,
"band": {
"1": {
"sr": 7350,
"hl": 80,
"n_fft": 640,
"crop_start": 0,
"crop_stop": 85,
"lpf_start": 25,
"lpf_stop": 53,
"res_type": "polyphase"
},
"2": {
"sr": 7350,
"hl": 80,
"n_fft": 320,
"crop_start": 4,
"crop_stop": 87,
"hpf_start": 25,
"hpf_stop": 12,
"lpf_start": 31,
"lpf_stop": 62,
"res_type": "polyphase"
},
"3": {
"sr": 14700,
"hl": 160,
"n_fft": 512,
"crop_start": 17,
"crop_stop": 216,
"hpf_start": 48,
"hpf_stop": 24,
"lpf_start": 139,
"lpf_stop": 210,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 480,
"n_fft": 960,
"crop_start": 78,
"crop_stop": 383,
"hpf_start": 130,
"hpf_stop": 86,
"res_type": "kaiser_fast"
}
},
"sr": 44100,
"pre_filter_start": 668,
"pre_filter_stop": 672
}

View File

@@ -0,0 +1,55 @@
{
"bins": 672,
"unstable_bins": 8,
"reduction_bins": 637,
"band": {
"1": {
"sr": 7350,
"hl": 80,
"n_fft": 640,
"crop_start": 0,
"crop_stop": 85,
"lpf_start": 25,
"lpf_stop": 53,
"res_type": "polyphase"
},
"2": {
"sr": 7350,
"hl": 80,
"n_fft": 320,
"crop_start": 4,
"crop_stop": 87,
"hpf_start": 25,
"hpf_stop": 12,
"lpf_start": 31,
"lpf_stop": 62,
"res_type": "polyphase"
},
"3": {
"sr": 14700,
"hl": 160,
"n_fft": 512,
"crop_start": 17,
"crop_stop": 216,
"hpf_start": 48,
"hpf_stop": 24,
"lpf_start": 139,
"lpf_stop": 210,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 480,
"n_fft": 960,
"crop_start": 78,
"crop_stop": 383,
"hpf_start": 130,
"hpf_stop": 86,
"convert_channels": "stereo_n",
"res_type": "kaiser_fast"
}
},
"sr": 44100,
"pre_filter_start": 668,
"pre_filter_stop": 672
}

View File

@@ -0,0 +1,54 @@
{
"bins": 672,
"unstable_bins": 8,
"reduction_bins": 530,
"band": {
"1": {
"sr": 7350,
"hl": 80,
"n_fft": 640,
"crop_start": 0,
"crop_stop": 85,
"lpf_start": 25,
"lpf_stop": 53,
"res_type": "polyphase"
},
"2": {
"sr": 7350,
"hl": 80,
"n_fft": 320,
"crop_start": 4,
"crop_stop": 87,
"hpf_start": 25,
"hpf_stop": 12,
"lpf_start": 31,
"lpf_stop": 62,
"res_type": "polyphase"
},
"3": {
"sr": 14700,
"hl": 160,
"n_fft": 512,
"crop_start": 17,
"crop_stop": 216,
"hpf_start": 48,
"hpf_stop": 24,
"lpf_start": 139,
"lpf_stop": 210,
"res_type": "polyphase"
},
"4": {
"sr": 44100,
"hl": 480,
"n_fft": 960,
"crop_start": 78,
"crop_stop": 383,
"hpf_start": 130,
"hpf_stop": 86,
"res_type": "kaiser_fast"
}
},
"sr": 44100,
"pre_filter_start": 668,
"pre_filter_stop": 672
}

View File

@@ -0,0 +1,43 @@
{
"mid_side_b2": true,
"bins": 1280,
"unstable_bins": 7,
"reduction_bins": 565,
"band": {
"1": {
"sr": 11025,
"hl": 108,
"n_fft": 2048,
"crop_start": 0,
"crop_stop": 374,
"lpf_start": 92,
"lpf_stop": 186,
"res_type": "polyphase"
},
"2": {
"sr": 22050,
"hl": 216,
"n_fft": 1536,
"crop_start": 0,
"crop_stop": 424,
"hpf_start": 68,
"hpf_stop": 34,
"lpf_start": 348,
"lpf_stop": 418,
"res_type": "polyphase"
},
"3": {
"sr": 44100,
"hl": 432,
"n_fft": 1280,
"crop_start": 132,
"crop_stop": 614,
"hpf_start": 172,
"hpf_stop": 144,
"res_type": "polyphase"
}
},
"sr": 44100,
"pre_filter_start": 1280,
"pre_filter_stop": 1280
}

171
lib_v5/vr_network/nets.py Normal file
View File

@@ -0,0 +1,171 @@
import torch
from torch import nn
import torch.nn.functional as F
from . import layers
class BaseASPPNet(nn.Module):
def __init__(self, nn_architecture, nin, ch, dilations=(4, 8, 16)):
super(BaseASPPNet, self).__init__()
self.nn_architecture = nn_architecture
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
if self.nn_architecture == 129605:
self.enc5 = layers.Encoder(ch * 8, ch * 16, 3, 2, 1)
self.aspp = layers.ASPPModule(nn_architecture, ch * 16, ch * 32, dilations)
self.dec5 = layers.Decoder(ch * (16 + 32), ch * 16, 3, 1, 1)
else:
self.aspp = layers.ASPPModule(nn_architecture, ch * 8, ch * 16, dilations)
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
def __call__(self, x):
h, e1 = self.enc1(x)
h, e2 = self.enc2(h)
h, e3 = self.enc3(h)
h, e4 = self.enc4(h)
if self.nn_architecture == 129605:
h, e5 = self.enc5(h)
h = self.aspp(h)
h = self.dec5(h, e5)
else:
h = self.aspp(h)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = self.dec1(h, e1)
return h
def determine_model_capacity(n_fft_bins, nn_architecture):
sp_model_arch = [31191, 33966, 129605]
hp_model_arch = [123821, 123812]
hp2_model_arch = [537238, 537227]
if nn_architecture in sp_model_arch:
model_capacity_data = [
(2, 16),
(2, 16),
(18, 8, 1, 1, 0),
(8, 16),
(34, 16, 1, 1, 0),
(16, 32),
(32, 2, 1),
(16, 2, 1),
(16, 2, 1),
]
if nn_architecture in hp_model_arch:
model_capacity_data = [
(2, 32),
(2, 32),
(34, 16, 1, 1, 0),
(16, 32),
(66, 32, 1, 1, 0),
(32, 64),
(64, 2, 1),
(32, 2, 1),
(32, 2, 1),
]
if nn_architecture in hp2_model_arch:
model_capacity_data = [
(2, 64),
(2, 64),
(66, 32, 1, 1, 0),
(32, 64),
(130, 64, 1, 1, 0),
(64, 128),
(128, 2, 1),
(64, 2, 1),
(64, 2, 1),
]
cascaded = CascadedASPPNet
model = cascaded(n_fft_bins, model_capacity_data, nn_architecture)
return model
class CascadedASPPNet(nn.Module):
def __init__(self, n_fft, model_capacity_data, nn_architecture):
super(CascadedASPPNet, self).__init__()
self.stg1_low_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[0])
self.stg1_high_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[1])
self.stg2_bridge = layers.Conv2DBNActiv(*model_capacity_data[2])
self.stg2_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[3])
self.stg3_bridge = layers.Conv2DBNActiv(*model_capacity_data[4])
self.stg3_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[5])
self.out = nn.Conv2d(*model_capacity_data[6], bias=False)
self.aux1_out = nn.Conv2d(*model_capacity_data[7], bias=False)
self.aux2_out = nn.Conv2d(*model_capacity_data[8], bias=False)
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.offset = 128
def forward(self, x, aggressiveness=None):
mix = x.detach()
x = x.clone()
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
aux1 = torch.cat([
self.stg1_low_band_net(x[:, :, :bandw]),
self.stg1_high_band_net(x[:, :, bandw:])
], dim=2)
h = torch.cat([x, aux1], dim=1)
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
h = torch.cat([x, aux1, aux2], dim=1)
h = self.stg3_full_band_net(self.stg3_bridge(h))
mask = torch.sigmoid(self.out(h))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate')
if self.training:
aux1 = torch.sigmoid(self.aux1_out(aux1))
aux1 = F.pad(
input=aux1,
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
mode='replicate')
aux2 = torch.sigmoid(self.aux2_out(aux2))
aux2 = F.pad(
input=aux2,
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
mode='replicate')
return mask * mix, aux1 * mix, aux2 * mix
else:
if aggressiveness:
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
return mask * mix
def predict(self, x_mag, aggressiveness=None):
h = self.forward(x_mag, aggressiveness)
if self.offset > 0:
h = h[:, :, :, self.offset:-self.offset]
assert h.size()[3] > 0
return h

View File

@@ -0,0 +1,143 @@
import torch
from torch import nn
import torch.nn.functional as F
from . import layers_new as layers
class BaseNet(nn.Module):
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
super(BaseNet, self).__init__()
self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)
self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
def __call__(self, x):
e1 = self.enc1(x)
e2 = self.enc2(e1)
e3 = self.enc3(e2)
e4 = self.enc4(e3)
e5 = self.enc5(e4)
h = self.aspp(e5)
h = self.dec4(h, e4)
h = self.dec3(h, e3)
h = self.dec2(h, e2)
h = torch.cat([h, self.lstm_dec2(h)], dim=1)
h = self.dec1(h, e1)
return h
class CascadedNet(nn.Module):
def __init__(self, n_fft, nn_architecture):
super(CascadedNet, self).__init__()
self.max_bin = n_fft // 2
self.output_bin = n_fft // 2 + 1
self.nin_lstm = self.max_bin // 2
self.offset = 64
self.nn_architecture = nn_architecture
print('ARC SIZE: ', nn_architecture)
if nn_architecture == 218409:
self.stg1_low_band_net = nn.Sequential(
BaseNet(2, 32, self.nin_lstm // 2, 128),
layers.Conv2DBNActiv(32, 16, 1, 1, 0)
)
self.stg1_high_band_net = BaseNet(2, 16, self.nin_lstm // 2, 64)
self.stg2_low_band_net = nn.Sequential(
BaseNet(18, 64, self.nin_lstm // 2, 128),
layers.Conv2DBNActiv(64, 32, 1, 1, 0)
)
self.stg2_high_band_net = BaseNet(18, 32, self.nin_lstm // 2, 64)
self.stg3_full_band_net = BaseNet(50, 64, self.nin_lstm, 128)
self.out = nn.Conv2d(64, 2, 1, bias=False)
self.aux_out = nn.Conv2d(48, 2, 1, bias=False)
else:
self.stg1_low_band_net = nn.Sequential(
BaseNet(2, 16, self.nin_lstm // 2, 128),
layers.Conv2DBNActiv(16, 8, 1, 1, 0)
)
self.stg1_high_band_net = BaseNet(2, 8, self.nin_lstm // 2, 64)
self.stg2_low_band_net = nn.Sequential(
BaseNet(10, 32, self.nin_lstm // 2, 128),
layers.Conv2DBNActiv(32, 16, 1, 1, 0)
)
self.stg2_high_band_net = BaseNet(10, 16, self.nin_lstm // 2, 64)
self.stg3_full_band_net = BaseNet(26, 32, self.nin_lstm, 128)
self.out = nn.Conv2d(32, 2, 1, bias=False)
self.aux_out = nn.Conv2d(24, 2, 1, bias=False)
def forward(self, x):
x = x[:, :, :self.max_bin]
bandw = x.size()[2] // 2
l1_in = x[:, :, :bandw]
h1_in = x[:, :, bandw:]
l1 = self.stg1_low_band_net(l1_in)
h1 = self.stg1_high_band_net(h1_in)
aux1 = torch.cat([l1, h1], dim=2)
l2_in = torch.cat([l1_in, l1], dim=1)
h2_in = torch.cat([h1_in, h1], dim=1)
l2 = self.stg2_low_band_net(l2_in)
h2 = self.stg2_high_band_net(h2_in)
aux2 = torch.cat([l2, h2], dim=2)
f3_in = torch.cat([x, aux1, aux2], dim=1)
f3 = self.stg3_full_band_net(f3_in)
mask = torch.sigmoid(self.out(f3))
mask = F.pad(
input=mask,
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
mode='replicate'
)
if self.training:
aux = torch.cat([aux1, aux2], dim=1)
aux = torch.sigmoid(self.aux_out(aux))
aux = F.pad(
input=aux,
pad=(0, 0, 0, self.output_bin - aux.size()[2]),
mode='replicate'
)
return mask, aux
else:
return mask
def predict_mask(self, x):
mask = self.forward(x)
if self.offset > 0:
mask = mask[:, :, :, self.offset:-self.offset]
assert mask.size()[3] > 0
return mask
def predict(self, x):
mask = self.forward(x)
pred_mag = x * mask
if self.offset > 0:
pred_mag = pred_mag[:, :, :, self.offset:-self.offset]
assert pred_mag.size()[3] > 0
return pred_mag