Add files via upload
This commit is contained in:
1
lib_v5/vr_network/__init__.py
Normal file
1
lib_v5/vr_network/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
# VR init.
|
||||
143
lib_v5/vr_network/layers.py
Normal file
143
lib_v5/vr_network/layers.py
Normal file
@@ -0,0 +1,143 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from lib_v5 import spec_utils
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
class SeperableConv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(SeperableConv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nin,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
groups=nin,
|
||||
bias=False),
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=1,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.conv2 = Conv2DBNActiv(nout, nout, ksize, stride, pad, activ=activ)
|
||||
|
||||
def __call__(self, x):
|
||||
skip = self.conv1(x)
|
||||
h = self.conv2(skip)
|
||||
|
||||
return h, skip
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
h = self.conv(x)
|
||||
|
||||
if self.dropout is not None:
|
||||
h = self.dropout(h)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nn_architecture, nin, nout, dilations=(4, 8, 16), activ=nn.ReLU):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
)
|
||||
|
||||
self.nn_architecture = nn_architecture
|
||||
self.six_layer = [129605]
|
||||
self.seven_layer = [537238, 537227, 33966]
|
||||
|
||||
extra_conv = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
|
||||
self.conv2 = Conv2DBNActiv(nin, nin, 1, 1, 0, activ=activ)
|
||||
self.conv3 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[0], dilations[0], activ=activ)
|
||||
self.conv4 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[1], dilations[1], activ=activ)
|
||||
self.conv5 = SeperableConv2DBNActiv(
|
||||
nin, nin, 3, 1, dilations[2], dilations[2], activ=activ)
|
||||
|
||||
if self.nn_architecture in self.six_layer:
|
||||
self.conv6 = extra_conv
|
||||
nin_x = 6
|
||||
elif self.nn_architecture in self.seven_layer:
|
||||
self.conv6 = extra_conv
|
||||
self.conv7 = extra_conv
|
||||
nin_x = 7
|
||||
else:
|
||||
nin_x = 5
|
||||
|
||||
self.bottleneck = nn.Sequential(
|
||||
Conv2DBNActiv(nin * nin_x, nout, 1, 1, 0, activ=activ),
|
||||
nn.Dropout2d(0.1)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
feat5 = self.conv5(x)
|
||||
|
||||
if self.nn_architecture in self.six_layer:
|
||||
feat6 = self.conv6(x)
|
||||
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6), dim=1)
|
||||
elif self.nn_architecture in self.seven_layer:
|
||||
feat6 = self.conv6(x)
|
||||
feat7 = self.conv7(x)
|
||||
out = torch.cat((feat1, feat2, feat3, feat4, feat5, feat6, feat7), dim=1)
|
||||
else:
|
||||
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
||||
|
||||
bottle = self.bottleneck(out)
|
||||
return bottle
|
||||
126
lib_v5/vr_network/layers_new.py
Normal file
126
lib_v5/vr_network/layers_new.py
Normal file
@@ -0,0 +1,126 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from lib_v5 import spec_utils
|
||||
|
||||
class Conv2DBNActiv(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
|
||||
super(Conv2DBNActiv, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
nn.Conv2d(
|
||||
nin, nout,
|
||||
kernel_size=ksize,
|
||||
stride=stride,
|
||||
padding=pad,
|
||||
dilation=dilation,
|
||||
bias=False),
|
||||
nn.BatchNorm2d(nout),
|
||||
activ()
|
||||
)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.conv(x)
|
||||
|
||||
class Encoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
|
||||
super(Encoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
|
||||
self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
||||
|
||||
def __call__(self, x):
|
||||
h = self.conv1(x)
|
||||
h = self.conv2(h)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False):
|
||||
super(Decoder, self).__init__()
|
||||
self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
|
||||
# self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def __call__(self, x, skip=None):
|
||||
x = F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True)
|
||||
|
||||
if skip is not None:
|
||||
skip = spec_utils.crop_center(skip, x)
|
||||
x = torch.cat([x, skip], dim=1)
|
||||
|
||||
h = self.conv1(x)
|
||||
# h = self.conv2(h)
|
||||
|
||||
if self.dropout is not None:
|
||||
h = self.dropout(h)
|
||||
|
||||
return h
|
||||
|
||||
|
||||
class ASPPModule(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
|
||||
super(ASPPModule, self).__init__()
|
||||
self.conv1 = nn.Sequential(
|
||||
nn.AdaptiveAvgPool2d((1, None)),
|
||||
Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
||||
)
|
||||
self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
|
||||
self.conv3 = Conv2DBNActiv(
|
||||
nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
|
||||
)
|
||||
self.conv4 = Conv2DBNActiv(
|
||||
nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
|
||||
)
|
||||
self.conv5 = Conv2DBNActiv(
|
||||
nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
|
||||
)
|
||||
self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
|
||||
self.dropout = nn.Dropout2d(0.1) if dropout else None
|
||||
|
||||
def forward(self, x):
|
||||
_, _, h, w = x.size()
|
||||
feat1 = F.interpolate(self.conv1(x), size=(h, w), mode='bilinear', align_corners=True)
|
||||
feat2 = self.conv2(x)
|
||||
feat3 = self.conv3(x)
|
||||
feat4 = self.conv4(x)
|
||||
feat5 = self.conv5(x)
|
||||
out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
|
||||
out = self.bottleneck(out)
|
||||
|
||||
if self.dropout is not None:
|
||||
out = self.dropout(out)
|
||||
|
||||
return out
|
||||
|
||||
|
||||
class LSTMModule(nn.Module):
|
||||
|
||||
def __init__(self, nin_conv, nin_lstm, nout_lstm):
|
||||
super(LSTMModule, self).__init__()
|
||||
self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
|
||||
self.lstm = nn.LSTM(
|
||||
input_size=nin_lstm,
|
||||
hidden_size=nout_lstm // 2,
|
||||
bidirectional=True
|
||||
)
|
||||
self.dense = nn.Sequential(
|
||||
nn.Linear(nout_lstm, nin_lstm),
|
||||
nn.BatchNorm1d(nin_lstm),
|
||||
nn.ReLU()
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
N, _, nbins, nframes = x.size()
|
||||
h = self.conv(x)[:, 0] # N, nbins, nframes
|
||||
h = h.permute(2, 0, 1) # nframes, N, nbins
|
||||
h, _ = self.lstm(h)
|
||||
h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
|
||||
h = h.reshape(nframes, N, 1, nbins)
|
||||
h = h.permute(1, 2, 3, 0)
|
||||
|
||||
return h
|
||||
59
lib_v5/vr_network/model_param_init.py
Normal file
59
lib_v5/vr_network/model_param_init.py
Normal file
@@ -0,0 +1,59 @@
|
||||
import json
|
||||
import pathlib
|
||||
|
||||
default_param = {}
|
||||
default_param['bins'] = 768
|
||||
default_param['unstable_bins'] = 9 # training only
|
||||
default_param['reduction_bins'] = 762 # training only
|
||||
default_param['sr'] = 44100
|
||||
default_param['pre_filter_start'] = 757
|
||||
default_param['pre_filter_stop'] = 768
|
||||
default_param['band'] = {}
|
||||
|
||||
|
||||
default_param['band'][1] = {
|
||||
'sr': 11025,
|
||||
'hl': 128,
|
||||
'n_fft': 960,
|
||||
'crop_start': 0,
|
||||
'crop_stop': 245,
|
||||
'lpf_start': 61, # inference only
|
||||
'res_type': 'polyphase'
|
||||
}
|
||||
|
||||
default_param['band'][2] = {
|
||||
'sr': 44100,
|
||||
'hl': 512,
|
||||
'n_fft': 1536,
|
||||
'crop_start': 24,
|
||||
'crop_stop': 547,
|
||||
'hpf_start': 81, # inference only
|
||||
'res_type': 'sinc_best'
|
||||
}
|
||||
|
||||
|
||||
def int_keys(d):
|
||||
r = {}
|
||||
for k, v in d:
|
||||
if k.isdigit():
|
||||
k = int(k)
|
||||
r[k] = v
|
||||
return r
|
||||
|
||||
|
||||
class ModelParameters(object):
|
||||
def __init__(self, config_path=''):
|
||||
if '.pth' == pathlib.Path(config_path).suffix:
|
||||
import zipfile
|
||||
|
||||
with zipfile.ZipFile(config_path, 'r') as zip:
|
||||
self.param = json.loads(zip.read('param.json'), object_pairs_hook=int_keys)
|
||||
elif '.json' == pathlib.Path(config_path).suffix:
|
||||
with open(config_path, 'r') as f:
|
||||
self.param = json.loads(f.read(), object_pairs_hook=int_keys)
|
||||
else:
|
||||
self.param = default_param
|
||||
|
||||
for k in ['mid_side', 'mid_side_b', 'mid_side_b2', 'stereo_w', 'stereo_n', 'reverse']:
|
||||
if not k in self.param:
|
||||
self.param[k] = False
|
||||
19
lib_v5/vr_network/modelparams/1band_sr16000_hl512.json
Normal file
19
lib_v5/vr_network/modelparams/1band_sr16000_hl512.json
Normal file
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 1024,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 16000,
|
||||
"hl": 512,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 1024,
|
||||
"hpf_start": -1,
|
||||
"res_type": "sinc_best"
|
||||
}
|
||||
},
|
||||
"sr": 16000,
|
||||
"pre_filter_start": 1023,
|
||||
"pre_filter_stop": 1024
|
||||
}
|
||||
19
lib_v5/vr_network/modelparams/1band_sr32000_hl512.json
Normal file
19
lib_v5/vr_network/modelparams/1band_sr32000_hl512.json
Normal file
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 1024,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 32000,
|
||||
"hl": 512,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 1024,
|
||||
"hpf_start": -1,
|
||||
"res_type": "kaiser_fast"
|
||||
}
|
||||
},
|
||||
"sr": 32000,
|
||||
"pre_filter_start": 1000,
|
||||
"pre_filter_stop": 1021
|
||||
}
|
||||
19
lib_v5/vr_network/modelparams/1band_sr33075_hl384.json
Normal file
19
lib_v5/vr_network/modelparams/1band_sr33075_hl384.json
Normal file
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 1024,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 33075,
|
||||
"hl": 384,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 1024,
|
||||
"hpf_start": -1,
|
||||
"res_type": "sinc_best"
|
||||
}
|
||||
},
|
||||
"sr": 33075,
|
||||
"pre_filter_start": 1000,
|
||||
"pre_filter_stop": 1021
|
||||
}
|
||||
19
lib_v5/vr_network/modelparams/1band_sr44100_hl1024.json
Normal file
19
lib_v5/vr_network/modelparams/1band_sr44100_hl1024.json
Normal file
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 1024,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 44100,
|
||||
"hl": 1024,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 1024,
|
||||
"hpf_start": -1,
|
||||
"res_type": "sinc_best"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 1023,
|
||||
"pre_filter_stop": 1024
|
||||
}
|
||||
19
lib_v5/vr_network/modelparams/1band_sr44100_hl256.json
Normal file
19
lib_v5/vr_network/modelparams/1band_sr44100_hl256.json
Normal file
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 256,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 44100,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 256,
|
||||
"hpf_start": -1,
|
||||
"res_type": "sinc_best"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 256,
|
||||
"pre_filter_stop": 256
|
||||
}
|
||||
19
lib_v5/vr_network/modelparams/1band_sr44100_hl512.json
Normal file
19
lib_v5/vr_network/modelparams/1band_sr44100_hl512.json
Normal file
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 1024,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 1024,
|
||||
"hpf_start": -1,
|
||||
"res_type": "sinc_best"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 1023,
|
||||
"pre_filter_stop": 1024
|
||||
}
|
||||
19
lib_v5/vr_network/modelparams/1band_sr44100_hl512_cut.json
Normal file
19
lib_v5/vr_network/modelparams/1band_sr44100_hl512_cut.json
Normal file
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 1024,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 700,
|
||||
"hpf_start": -1,
|
||||
"res_type": "sinc_best"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 1023,
|
||||
"pre_filter_stop": 700
|
||||
}
|
||||
@@ -0,0 +1,19 @@
|
||||
{
|
||||
"bins": 1024,
|
||||
"unstable_bins": 0,
|
||||
"reduction_bins": 0,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 1024,
|
||||
"hpf_start": -1,
|
||||
"res_type": "sinc_best"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 1023,
|
||||
"pre_filter_stop": 1024
|
||||
}
|
||||
30
lib_v5/vr_network/modelparams/2band_32000.json
Normal file
30
lib_v5/vr_network/modelparams/2band_32000.json
Normal file
@@ -0,0 +1,30 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 705,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 6000,
|
||||
"hl": 66,
|
||||
"n_fft": 512,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 240,
|
||||
"lpf_start": 60,
|
||||
"lpf_stop": 118,
|
||||
"res_type": "sinc_fastest"
|
||||
},
|
||||
"2": {
|
||||
"sr": 32000,
|
||||
"hl": 352,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 22,
|
||||
"crop_stop": 505,
|
||||
"hpf_start": 44,
|
||||
"hpf_stop": 23,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 32000,
|
||||
"pre_filter_start": 710,
|
||||
"pre_filter_stop": 731
|
||||
}
|
||||
30
lib_v5/vr_network/modelparams/2band_44100_lofi.json
Normal file
30
lib_v5/vr_network/modelparams/2band_44100_lofi.json
Normal file
@@ -0,0 +1,30 @@
|
||||
{
|
||||
"bins": 512,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 510,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 160,
|
||||
"n_fft": 768,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 192,
|
||||
"lpf_start": 41,
|
||||
"lpf_stop": 139,
|
||||
"res_type": "sinc_fastest"
|
||||
},
|
||||
"2": {
|
||||
"sr": 44100,
|
||||
"hl": 640,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 10,
|
||||
"crop_stop": 320,
|
||||
"hpf_start": 47,
|
||||
"hpf_stop": 15,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 510,
|
||||
"pre_filter_stop": 512
|
||||
}
|
||||
30
lib_v5/vr_network/modelparams/2band_48000.json
Normal file
30
lib_v5/vr_network/modelparams/2band_48000.json
Normal file
@@ -0,0 +1,30 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 705,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 6000,
|
||||
"hl": 66,
|
||||
"n_fft": 512,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 240,
|
||||
"lpf_start": 60,
|
||||
"lpf_stop": 240,
|
||||
"res_type": "sinc_fastest"
|
||||
},
|
||||
"2": {
|
||||
"sr": 48000,
|
||||
"hl": 528,
|
||||
"n_fft": 1536,
|
||||
"crop_start": 22,
|
||||
"crop_stop": 505,
|
||||
"hpf_start": 82,
|
||||
"hpf_stop": 22,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 48000,
|
||||
"pre_filter_start": 710,
|
||||
"pre_filter_stop": 731
|
||||
}
|
||||
42
lib_v5/vr_network/modelparams/3band_44100.json
Normal file
42
lib_v5/vr_network/modelparams/3band_44100.json
Normal file
@@ -0,0 +1,42 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 5,
|
||||
"reduction_bins": 733,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 768,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 278,
|
||||
"lpf_start": 28,
|
||||
"lpf_stop": 140,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 768,
|
||||
"crop_start": 14,
|
||||
"crop_stop": 322,
|
||||
"hpf_start": 70,
|
||||
"hpf_stop": 14,
|
||||
"lpf_start": 283,
|
||||
"lpf_stop": 314,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 131,
|
||||
"crop_stop": 313,
|
||||
"hpf_start": 154,
|
||||
"hpf_stop": 141,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 757,
|
||||
"pre_filter_stop": 768
|
||||
}
|
||||
43
lib_v5/vr_network/modelparams/3band_44100_mid.json
Normal file
43
lib_v5/vr_network/modelparams/3band_44100_mid.json
Normal file
@@ -0,0 +1,43 @@
|
||||
{
|
||||
"mid_side": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 5,
|
||||
"reduction_bins": 733,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 768,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 278,
|
||||
"lpf_start": 28,
|
||||
"lpf_stop": 140,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 768,
|
||||
"crop_start": 14,
|
||||
"crop_stop": 322,
|
||||
"hpf_start": 70,
|
||||
"hpf_stop": 14,
|
||||
"lpf_start": 283,
|
||||
"lpf_stop": 314,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 131,
|
||||
"crop_stop": 313,
|
||||
"hpf_start": 154,
|
||||
"hpf_stop": 141,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 757,
|
||||
"pre_filter_stop": 768
|
||||
}
|
||||
43
lib_v5/vr_network/modelparams/3band_44100_msb2.json
Normal file
43
lib_v5/vr_network/modelparams/3band_44100_msb2.json
Normal file
@@ -0,0 +1,43 @@
|
||||
{
|
||||
"mid_side_b2": true,
|
||||
"bins": 640,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 565,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 108,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 187,
|
||||
"lpf_start": 92,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 22050,
|
||||
"hl": 216,
|
||||
"n_fft": 768,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 212,
|
||||
"hpf_start": 68,
|
||||
"hpf_stop": 34,
|
||||
"lpf_start": 174,
|
||||
"lpf_stop": 209,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 44100,
|
||||
"hl": 432,
|
||||
"n_fft": 640,
|
||||
"crop_start": 66,
|
||||
"crop_stop": 307,
|
||||
"hpf_start": 86,
|
||||
"hpf_stop": 72,
|
||||
"res_type": "kaiser_fast"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 639,
|
||||
"pre_filter_stop": 640
|
||||
}
|
||||
54
lib_v5/vr_network/modelparams/4band_44100.json
Normal file
54
lib_v5/vr_network/modelparams/4band_44100.json
Normal file
@@ -0,0 +1,54 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
||||
55
lib_v5/vr_network/modelparams/4band_44100_mid.json
Normal file
55
lib_v5/vr_network/modelparams/4band_44100_mid.json
Normal file
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"mid_side": true,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
||||
55
lib_v5/vr_network/modelparams/4band_44100_msb.json
Normal file
55
lib_v5/vr_network/modelparams/4band_44100_msb.json
Normal file
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"mid_side_b": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
||||
55
lib_v5/vr_network/modelparams/4band_44100_msb2.json
Normal file
55
lib_v5/vr_network/modelparams/4band_44100_msb2.json
Normal file
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"mid_side_b": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
||||
55
lib_v5/vr_network/modelparams/4band_44100_reverse.json
Normal file
55
lib_v5/vr_network/modelparams/4band_44100_reverse.json
Normal file
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"reverse": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
||||
55
lib_v5/vr_network/modelparams/4band_44100_sw.json
Normal file
55
lib_v5/vr_network/modelparams/4band_44100_sw.json
Normal file
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"stereo_w": true,
|
||||
"bins": 768,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 668,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 1024,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 186,
|
||||
"lpf_start": 37,
|
||||
"lpf_stop": 73,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 11025,
|
||||
"hl": 128,
|
||||
"n_fft": 512,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 185,
|
||||
"hpf_start": 36,
|
||||
"hpf_stop": 18,
|
||||
"lpf_start": 93,
|
||||
"lpf_stop": 185,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 22050,
|
||||
"hl": 256,
|
||||
"n_fft": 512,
|
||||
"crop_start": 46,
|
||||
"crop_stop": 186,
|
||||
"hpf_start": 93,
|
||||
"hpf_stop": 46,
|
||||
"lpf_start": 164,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 512,
|
||||
"n_fft": 768,
|
||||
"crop_start": 121,
|
||||
"crop_stop": 382,
|
||||
"hpf_start": 138,
|
||||
"hpf_stop": 123,
|
||||
"res_type": "sinc_medium"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 740,
|
||||
"pre_filter_stop": 768
|
||||
}
|
||||
54
lib_v5/vr_network/modelparams/4band_v2.json
Normal file
54
lib_v5/vr_network/modelparams/4band_v2.json
Normal file
@@ -0,0 +1,54 @@
|
||||
{
|
||||
"bins": 672,
|
||||
"unstable_bins": 8,
|
||||
"reduction_bins": 637,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 640,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 85,
|
||||
"lpf_start": 25,
|
||||
"lpf_stop": 53,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 320,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 87,
|
||||
"hpf_start": 25,
|
||||
"hpf_stop": 12,
|
||||
"lpf_start": 31,
|
||||
"lpf_stop": 62,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 14700,
|
||||
"hl": 160,
|
||||
"n_fft": 512,
|
||||
"crop_start": 17,
|
||||
"crop_stop": 216,
|
||||
"hpf_start": 48,
|
||||
"hpf_stop": 24,
|
||||
"lpf_start": 139,
|
||||
"lpf_stop": 210,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 480,
|
||||
"n_fft": 960,
|
||||
"crop_start": 78,
|
||||
"crop_stop": 383,
|
||||
"hpf_start": 130,
|
||||
"hpf_stop": 86,
|
||||
"res_type": "kaiser_fast"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 668,
|
||||
"pre_filter_stop": 672
|
||||
}
|
||||
55
lib_v5/vr_network/modelparams/4band_v2_sn.json
Normal file
55
lib_v5/vr_network/modelparams/4band_v2_sn.json
Normal file
@@ -0,0 +1,55 @@
|
||||
{
|
||||
"bins": 672,
|
||||
"unstable_bins": 8,
|
||||
"reduction_bins": 637,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 640,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 85,
|
||||
"lpf_start": 25,
|
||||
"lpf_stop": 53,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 320,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 87,
|
||||
"hpf_start": 25,
|
||||
"hpf_stop": 12,
|
||||
"lpf_start": 31,
|
||||
"lpf_stop": 62,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 14700,
|
||||
"hl": 160,
|
||||
"n_fft": 512,
|
||||
"crop_start": 17,
|
||||
"crop_stop": 216,
|
||||
"hpf_start": 48,
|
||||
"hpf_stop": 24,
|
||||
"lpf_start": 139,
|
||||
"lpf_stop": 210,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 480,
|
||||
"n_fft": 960,
|
||||
"crop_start": 78,
|
||||
"crop_stop": 383,
|
||||
"hpf_start": 130,
|
||||
"hpf_stop": 86,
|
||||
"convert_channels": "stereo_n",
|
||||
"res_type": "kaiser_fast"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 668,
|
||||
"pre_filter_stop": 672
|
||||
}
|
||||
54
lib_v5/vr_network/modelparams/4band_v3.json
Normal file
54
lib_v5/vr_network/modelparams/4band_v3.json
Normal file
@@ -0,0 +1,54 @@
|
||||
{
|
||||
"bins": 672,
|
||||
"unstable_bins": 8,
|
||||
"reduction_bins": 530,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 640,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 85,
|
||||
"lpf_start": 25,
|
||||
"lpf_stop": 53,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 7350,
|
||||
"hl": 80,
|
||||
"n_fft": 320,
|
||||
"crop_start": 4,
|
||||
"crop_stop": 87,
|
||||
"hpf_start": 25,
|
||||
"hpf_stop": 12,
|
||||
"lpf_start": 31,
|
||||
"lpf_stop": 62,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 14700,
|
||||
"hl": 160,
|
||||
"n_fft": 512,
|
||||
"crop_start": 17,
|
||||
"crop_stop": 216,
|
||||
"hpf_start": 48,
|
||||
"hpf_stop": 24,
|
||||
"lpf_start": 139,
|
||||
"lpf_stop": 210,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"4": {
|
||||
"sr": 44100,
|
||||
"hl": 480,
|
||||
"n_fft": 960,
|
||||
"crop_start": 78,
|
||||
"crop_stop": 383,
|
||||
"hpf_start": 130,
|
||||
"hpf_stop": 86,
|
||||
"res_type": "kaiser_fast"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 668,
|
||||
"pre_filter_stop": 672
|
||||
}
|
||||
43
lib_v5/vr_network/modelparams/ensemble.json
Normal file
43
lib_v5/vr_network/modelparams/ensemble.json
Normal file
@@ -0,0 +1,43 @@
|
||||
{
|
||||
"mid_side_b2": true,
|
||||
"bins": 1280,
|
||||
"unstable_bins": 7,
|
||||
"reduction_bins": 565,
|
||||
"band": {
|
||||
"1": {
|
||||
"sr": 11025,
|
||||
"hl": 108,
|
||||
"n_fft": 2048,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 374,
|
||||
"lpf_start": 92,
|
||||
"lpf_stop": 186,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"2": {
|
||||
"sr": 22050,
|
||||
"hl": 216,
|
||||
"n_fft": 1536,
|
||||
"crop_start": 0,
|
||||
"crop_stop": 424,
|
||||
"hpf_start": 68,
|
||||
"hpf_stop": 34,
|
||||
"lpf_start": 348,
|
||||
"lpf_stop": 418,
|
||||
"res_type": "polyphase"
|
||||
},
|
||||
"3": {
|
||||
"sr": 44100,
|
||||
"hl": 432,
|
||||
"n_fft": 1280,
|
||||
"crop_start": 132,
|
||||
"crop_stop": 614,
|
||||
"hpf_start": 172,
|
||||
"hpf_stop": 144,
|
||||
"res_type": "polyphase"
|
||||
}
|
||||
},
|
||||
"sr": 44100,
|
||||
"pre_filter_start": 1280,
|
||||
"pre_filter_stop": 1280
|
||||
}
|
||||
171
lib_v5/vr_network/nets.py
Normal file
171
lib_v5/vr_network/nets.py
Normal file
@@ -0,0 +1,171 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from . import layers
|
||||
|
||||
class BaseASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, nn_architecture, nin, ch, dilations=(4, 8, 16)):
|
||||
super(BaseASPPNet, self).__init__()
|
||||
self.nn_architecture = nn_architecture
|
||||
self.enc1 = layers.Encoder(nin, ch, 3, 2, 1)
|
||||
self.enc2 = layers.Encoder(ch, ch * 2, 3, 2, 1)
|
||||
self.enc3 = layers.Encoder(ch * 2, ch * 4, 3, 2, 1)
|
||||
self.enc4 = layers.Encoder(ch * 4, ch * 8, 3, 2, 1)
|
||||
|
||||
if self.nn_architecture == 129605:
|
||||
self.enc5 = layers.Encoder(ch * 8, ch * 16, 3, 2, 1)
|
||||
self.aspp = layers.ASPPModule(nn_architecture, ch * 16, ch * 32, dilations)
|
||||
self.dec5 = layers.Decoder(ch * (16 + 32), ch * 16, 3, 1, 1)
|
||||
else:
|
||||
self.aspp = layers.ASPPModule(nn_architecture, ch * 8, ch * 16, dilations)
|
||||
|
||||
self.dec4 = layers.Decoder(ch * (8 + 16), ch * 8, 3, 1, 1)
|
||||
self.dec3 = layers.Decoder(ch * (4 + 8), ch * 4, 3, 1, 1)
|
||||
self.dec2 = layers.Decoder(ch * (2 + 4), ch * 2, 3, 1, 1)
|
||||
self.dec1 = layers.Decoder(ch * (1 + 2), ch, 3, 1, 1)
|
||||
|
||||
def __call__(self, x):
|
||||
h, e1 = self.enc1(x)
|
||||
h, e2 = self.enc2(h)
|
||||
h, e3 = self.enc3(h)
|
||||
h, e4 = self.enc4(h)
|
||||
|
||||
if self.nn_architecture == 129605:
|
||||
h, e5 = self.enc5(h)
|
||||
h = self.aspp(h)
|
||||
h = self.dec5(h, e5)
|
||||
else:
|
||||
h = self.aspp(h)
|
||||
|
||||
h = self.dec4(h, e4)
|
||||
h = self.dec3(h, e3)
|
||||
h = self.dec2(h, e2)
|
||||
h = self.dec1(h, e1)
|
||||
|
||||
return h
|
||||
|
||||
def determine_model_capacity(n_fft_bins, nn_architecture):
|
||||
|
||||
sp_model_arch = [31191, 33966, 129605]
|
||||
hp_model_arch = [123821, 123812]
|
||||
hp2_model_arch = [537238, 537227]
|
||||
|
||||
if nn_architecture in sp_model_arch:
|
||||
model_capacity_data = [
|
||||
(2, 16),
|
||||
(2, 16),
|
||||
(18, 8, 1, 1, 0),
|
||||
(8, 16),
|
||||
(34, 16, 1, 1, 0),
|
||||
(16, 32),
|
||||
(32, 2, 1),
|
||||
(16, 2, 1),
|
||||
(16, 2, 1),
|
||||
]
|
||||
|
||||
if nn_architecture in hp_model_arch:
|
||||
model_capacity_data = [
|
||||
(2, 32),
|
||||
(2, 32),
|
||||
(34, 16, 1, 1, 0),
|
||||
(16, 32),
|
||||
(66, 32, 1, 1, 0),
|
||||
(32, 64),
|
||||
(64, 2, 1),
|
||||
(32, 2, 1),
|
||||
(32, 2, 1),
|
||||
]
|
||||
|
||||
if nn_architecture in hp2_model_arch:
|
||||
model_capacity_data = [
|
||||
(2, 64),
|
||||
(2, 64),
|
||||
(66, 32, 1, 1, 0),
|
||||
(32, 64),
|
||||
(130, 64, 1, 1, 0),
|
||||
(64, 128),
|
||||
(128, 2, 1),
|
||||
(64, 2, 1),
|
||||
(64, 2, 1),
|
||||
]
|
||||
|
||||
cascaded = CascadedASPPNet
|
||||
model = cascaded(n_fft_bins, model_capacity_data, nn_architecture)
|
||||
|
||||
return model
|
||||
|
||||
class CascadedASPPNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft, model_capacity_data, nn_architecture):
|
||||
super(CascadedASPPNet, self).__init__()
|
||||
self.stg1_low_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[0])
|
||||
self.stg1_high_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[1])
|
||||
|
||||
self.stg2_bridge = layers.Conv2DBNActiv(*model_capacity_data[2])
|
||||
self.stg2_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[3])
|
||||
|
||||
self.stg3_bridge = layers.Conv2DBNActiv(*model_capacity_data[4])
|
||||
self.stg3_full_band_net = BaseASPPNet(nn_architecture, *model_capacity_data[5])
|
||||
|
||||
self.out = nn.Conv2d(*model_capacity_data[6], bias=False)
|
||||
self.aux1_out = nn.Conv2d(*model_capacity_data[7], bias=False)
|
||||
self.aux2_out = nn.Conv2d(*model_capacity_data[8], bias=False)
|
||||
|
||||
self.max_bin = n_fft // 2
|
||||
self.output_bin = n_fft // 2 + 1
|
||||
|
||||
self.offset = 128
|
||||
|
||||
def forward(self, x, aggressiveness=None):
|
||||
mix = x.detach()
|
||||
x = x.clone()
|
||||
|
||||
x = x[:, :, :self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
aux1 = torch.cat([
|
||||
self.stg1_low_band_net(x[:, :, :bandw]),
|
||||
self.stg1_high_band_net(x[:, :, bandw:])
|
||||
], dim=2)
|
||||
|
||||
h = torch.cat([x, aux1], dim=1)
|
||||
aux2 = self.stg2_full_band_net(self.stg2_bridge(h))
|
||||
|
||||
h = torch.cat([x, aux1, aux2], dim=1)
|
||||
h = self.stg3_full_band_net(self.stg3_bridge(h))
|
||||
|
||||
mask = torch.sigmoid(self.out(h))
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate')
|
||||
|
||||
if self.training:
|
||||
aux1 = torch.sigmoid(self.aux1_out(aux1))
|
||||
aux1 = F.pad(
|
||||
input=aux1,
|
||||
pad=(0, 0, 0, self.output_bin - aux1.size()[2]),
|
||||
mode='replicate')
|
||||
aux2 = torch.sigmoid(self.aux2_out(aux2))
|
||||
aux2 = F.pad(
|
||||
input=aux2,
|
||||
pad=(0, 0, 0, self.output_bin - aux2.size()[2]),
|
||||
mode='replicate')
|
||||
return mask * mix, aux1 * mix, aux2 * mix
|
||||
else:
|
||||
if aggressiveness:
|
||||
mask[:, :, :aggressiveness['split_bin']] = torch.pow(mask[:, :, :aggressiveness['split_bin']], 1 + aggressiveness['value'] / 3)
|
||||
mask[:, :, aggressiveness['split_bin']:] = torch.pow(mask[:, :, aggressiveness['split_bin']:], 1 + aggressiveness['value'])
|
||||
|
||||
return mask * mix
|
||||
|
||||
def predict(self, x_mag, aggressiveness=None):
|
||||
h = self.forward(x_mag, aggressiveness)
|
||||
|
||||
if self.offset > 0:
|
||||
h = h[:, :, :, self.offset:-self.offset]
|
||||
assert h.size()[3] > 0
|
||||
|
||||
return h
|
||||
143
lib_v5/vr_network/nets_new.py
Normal file
143
lib_v5/vr_network/nets_new.py
Normal file
@@ -0,0 +1,143 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from . import layers_new as layers
|
||||
|
||||
class BaseNet(nn.Module):
|
||||
|
||||
def __init__(self, nin, nout, nin_lstm, nout_lstm, dilations=((4, 2), (8, 4), (12, 6))):
|
||||
super(BaseNet, self).__init__()
|
||||
self.enc1 = layers.Conv2DBNActiv(nin, nout, 3, 1, 1)
|
||||
self.enc2 = layers.Encoder(nout, nout * 2, 3, 2, 1)
|
||||
self.enc3 = layers.Encoder(nout * 2, nout * 4, 3, 2, 1)
|
||||
self.enc4 = layers.Encoder(nout * 4, nout * 6, 3, 2, 1)
|
||||
self.enc5 = layers.Encoder(nout * 6, nout * 8, 3, 2, 1)
|
||||
|
||||
self.aspp = layers.ASPPModule(nout * 8, nout * 8, dilations, dropout=True)
|
||||
|
||||
self.dec4 = layers.Decoder(nout * (6 + 8), nout * 6, 3, 1, 1)
|
||||
self.dec3 = layers.Decoder(nout * (4 + 6), nout * 4, 3, 1, 1)
|
||||
self.dec2 = layers.Decoder(nout * (2 + 4), nout * 2, 3, 1, 1)
|
||||
self.lstm_dec2 = layers.LSTMModule(nout * 2, nin_lstm, nout_lstm)
|
||||
self.dec1 = layers.Decoder(nout * (1 + 2) + 1, nout * 1, 3, 1, 1)
|
||||
|
||||
def __call__(self, x):
|
||||
e1 = self.enc1(x)
|
||||
e2 = self.enc2(e1)
|
||||
e3 = self.enc3(e2)
|
||||
e4 = self.enc4(e3)
|
||||
e5 = self.enc5(e4)
|
||||
|
||||
h = self.aspp(e5)
|
||||
|
||||
h = self.dec4(h, e4)
|
||||
h = self.dec3(h, e3)
|
||||
h = self.dec2(h, e2)
|
||||
h = torch.cat([h, self.lstm_dec2(h)], dim=1)
|
||||
h = self.dec1(h, e1)
|
||||
|
||||
return h
|
||||
|
||||
class CascadedNet(nn.Module):
|
||||
|
||||
def __init__(self, n_fft, nn_architecture):
|
||||
super(CascadedNet, self).__init__()
|
||||
self.max_bin = n_fft // 2
|
||||
self.output_bin = n_fft // 2 + 1
|
||||
self.nin_lstm = self.max_bin // 2
|
||||
self.offset = 64
|
||||
self.nn_architecture = nn_architecture
|
||||
|
||||
print('ARC SIZE: ', nn_architecture)
|
||||
|
||||
if nn_architecture == 218409:
|
||||
self.stg1_low_band_net = nn.Sequential(
|
||||
BaseNet(2, 32, self.nin_lstm // 2, 128),
|
||||
layers.Conv2DBNActiv(32, 16, 1, 1, 0)
|
||||
)
|
||||
self.stg1_high_band_net = BaseNet(2, 16, self.nin_lstm // 2, 64)
|
||||
|
||||
self.stg2_low_band_net = nn.Sequential(
|
||||
BaseNet(18, 64, self.nin_lstm // 2, 128),
|
||||
layers.Conv2DBNActiv(64, 32, 1, 1, 0)
|
||||
)
|
||||
self.stg2_high_band_net = BaseNet(18, 32, self.nin_lstm // 2, 64)
|
||||
|
||||
self.stg3_full_band_net = BaseNet(50, 64, self.nin_lstm, 128)
|
||||
|
||||
self.out = nn.Conv2d(64, 2, 1, bias=False)
|
||||
self.aux_out = nn.Conv2d(48, 2, 1, bias=False)
|
||||
else:
|
||||
self.stg1_low_band_net = nn.Sequential(
|
||||
BaseNet(2, 16, self.nin_lstm // 2, 128),
|
||||
layers.Conv2DBNActiv(16, 8, 1, 1, 0)
|
||||
)
|
||||
self.stg1_high_band_net = BaseNet(2, 8, self.nin_lstm // 2, 64)
|
||||
|
||||
self.stg2_low_band_net = nn.Sequential(
|
||||
BaseNet(10, 32, self.nin_lstm // 2, 128),
|
||||
layers.Conv2DBNActiv(32, 16, 1, 1, 0)
|
||||
)
|
||||
self.stg2_high_band_net = BaseNet(10, 16, self.nin_lstm // 2, 64)
|
||||
|
||||
self.stg3_full_band_net = BaseNet(26, 32, self.nin_lstm, 128)
|
||||
|
||||
self.out = nn.Conv2d(32, 2, 1, bias=False)
|
||||
self.aux_out = nn.Conv2d(24, 2, 1, bias=False)
|
||||
|
||||
def forward(self, x):
|
||||
x = x[:, :, :self.max_bin]
|
||||
|
||||
bandw = x.size()[2] // 2
|
||||
l1_in = x[:, :, :bandw]
|
||||
h1_in = x[:, :, bandw:]
|
||||
l1 = self.stg1_low_band_net(l1_in)
|
||||
h1 = self.stg1_high_band_net(h1_in)
|
||||
aux1 = torch.cat([l1, h1], dim=2)
|
||||
|
||||
l2_in = torch.cat([l1_in, l1], dim=1)
|
||||
h2_in = torch.cat([h1_in, h1], dim=1)
|
||||
l2 = self.stg2_low_band_net(l2_in)
|
||||
h2 = self.stg2_high_band_net(h2_in)
|
||||
aux2 = torch.cat([l2, h2], dim=2)
|
||||
|
||||
f3_in = torch.cat([x, aux1, aux2], dim=1)
|
||||
f3 = self.stg3_full_band_net(f3_in)
|
||||
|
||||
mask = torch.sigmoid(self.out(f3))
|
||||
mask = F.pad(
|
||||
input=mask,
|
||||
pad=(0, 0, 0, self.output_bin - mask.size()[2]),
|
||||
mode='replicate'
|
||||
)
|
||||
|
||||
if self.training:
|
||||
aux = torch.cat([aux1, aux2], dim=1)
|
||||
aux = torch.sigmoid(self.aux_out(aux))
|
||||
aux = F.pad(
|
||||
input=aux,
|
||||
pad=(0, 0, 0, self.output_bin - aux.size()[2]),
|
||||
mode='replicate'
|
||||
)
|
||||
return mask, aux
|
||||
else:
|
||||
return mask
|
||||
|
||||
def predict_mask(self, x):
|
||||
mask = self.forward(x)
|
||||
|
||||
if self.offset > 0:
|
||||
mask = mask[:, :, :, self.offset:-self.offset]
|
||||
assert mask.size()[3] > 0
|
||||
|
||||
return mask
|
||||
|
||||
def predict(self, x):
|
||||
mask = self.forward(x)
|
||||
pred_mag = x * mask
|
||||
|
||||
if self.offset > 0:
|
||||
pred_mag = pred_mag[:, :, :, self.offset:-self.offset]
|
||||
assert pred_mag.size()[3] > 0
|
||||
|
||||
return pred_mag
|
||||
Reference in New Issue
Block a user