Add files via upload
This commit is contained in:
@@ -1,37 +1,37 @@
|
||||
import os
|
||||
from pathlib import Path
|
||||
import os.path
|
||||
from datetime import datetime
|
||||
import pydub
|
||||
import shutil
|
||||
from random import randrange
|
||||
#MDX-Net
|
||||
#----------------------------------------
|
||||
import soundfile as sf
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from demucs.pretrained import get_model as _gm
|
||||
from demucs.hdemucs import HDemucs
|
||||
from demucs.apply import BagOfModels, apply_model
|
||||
from demucs.audio import AudioFile
|
||||
|
||||
import time
|
||||
import os
|
||||
from tqdm import tqdm
|
||||
import warnings
|
||||
import sys
|
||||
import librosa
|
||||
import psutil
|
||||
#----------------------------------------
|
||||
from demucs.hdemucs import HDemucs
|
||||
from demucs.model_v2 import Demucs
|
||||
from demucs.pretrained import get_model as _gm
|
||||
from demucs.tasnet_v2 import ConvTasNet
|
||||
from demucs.utils import apply_model_v1
|
||||
from demucs.utils import apply_model_v2
|
||||
from diffq import DiffQuantizer
|
||||
from lib_v5 import spec_utils
|
||||
from lib_v5.model_param_init import ModelParameters
|
||||
import torch
|
||||
|
||||
# Command line text parsing and widget manipulation
|
||||
import tkinter as tk
|
||||
import traceback # Error Message Recent Calls
|
||||
from pathlib import Path
|
||||
from random import randrange
|
||||
from tqdm import tqdm
|
||||
import gzip
|
||||
import io
|
||||
import librosa
|
||||
import numpy as np
|
||||
import os
|
||||
import os
|
||||
import os.path
|
||||
import psutil
|
||||
import pydub
|
||||
import shutil
|
||||
import soundfile as sf
|
||||
import sys
|
||||
import time
|
||||
import time # Timer
|
||||
import tkinter as tk
|
||||
import torch
|
||||
import torch.hub
|
||||
import traceback # Error Message Recent Calls
|
||||
import warnings
|
||||
import zlib
|
||||
|
||||
class Predictor():
|
||||
def __init__(self):
|
||||
@@ -46,40 +46,62 @@ class Predictor():
|
||||
if data['gpu'] == -1:
|
||||
device = torch.device('cpu')
|
||||
|
||||
self.demucs = HDemucs(sources=["drums", "bass", "other", "vocals"])
|
||||
widget_text.write(base_text + 'Loading Demucs model... ')
|
||||
update_progress(**progress_kwargs,
|
||||
step=0.05)
|
||||
path_d = Path('models/Demucs_Models')
|
||||
print('What Demucs model was chosen? ', data['DemucsModel'])
|
||||
self.demucs = _gm(name=data['DemucsModel'], repo=path_d)
|
||||
widget_text.write('Done!\n')
|
||||
if 'UVR' in data['DemucsModel']:
|
||||
widget_text.write(base_text + "2 stem model selected.\n")
|
||||
if isinstance(self.demucs, BagOfModels):
|
||||
widget_text.write(base_text + f"Selected model is a bag of {len(self.demucs.models)} models.\n")
|
||||
|
||||
if data['segment'] == 'None':
|
||||
segment = None
|
||||
if isinstance(self.demucs, BagOfModels):
|
||||
if segment is not None:
|
||||
for sub in self.demucs.models:
|
||||
sub.segment = segment
|
||||
if demucs_model_version == 'v1':
|
||||
load_from = "models/Demucs_Models/"f"{demucs_model_set_name}"
|
||||
if str(load_from).endswith(".gz"):
|
||||
load_from = gzip.open(load_from, "rb")
|
||||
klass, args, kwargs, state = torch.load(load_from)
|
||||
self.demucs = klass(*args, **kwargs)
|
||||
widget_text.write(base_text + 'Loading Demucs v1 model... ')
|
||||
update_progress(**progress_kwargs,
|
||||
step=0.05)
|
||||
self.demucs.to(device)
|
||||
self.demucs.load_state_dict(state)
|
||||
widget_text.write('Done!\n')
|
||||
if not data['segment'] == 'None':
|
||||
widget_text.write(base_text + 'Segments is only available in Demucs v3. Please use \"Chunks\" instead.\n')
|
||||
else:
|
||||
if segment is not None:
|
||||
sub.segment = segment
|
||||
else:
|
||||
try:
|
||||
segment = int(data['segment'])
|
||||
if isinstance(self.demucs, BagOfModels):
|
||||
if segment is not None:
|
||||
for sub in self.demucs.models:
|
||||
sub.segment = segment
|
||||
else:
|
||||
if segment is not None:
|
||||
sub.segment = segment
|
||||
widget_text.write(base_text + "Segments set to "f"{segment}.\n")
|
||||
except:
|
||||
pass
|
||||
|
||||
if demucs_model_version == 'v2':
|
||||
if '48' in demucs_model_set_name:
|
||||
channels=48
|
||||
elif 'unittest' in demucs_model_set_name:
|
||||
channels=4
|
||||
else:
|
||||
channels=64
|
||||
|
||||
if 'tasnet' in demucs_model_set_name:
|
||||
self.demucs = ConvTasNet(sources=["drums", "bass", "other", "vocals"], X=10)
|
||||
else:
|
||||
self.demucs = Demucs(sources=["drums", "bass", "other", "vocals"], channels=channels)
|
||||
widget_text.write(base_text + 'Loading Demucs v2 model... ')
|
||||
update_progress(**progress_kwargs,
|
||||
step=0.05)
|
||||
self.demucs.to(device)
|
||||
self.demucs.load_state_dict(torch.load("models/Demucs_Models/"f"{demucs_model_set_name}"))
|
||||
widget_text.write('Done!\n')
|
||||
if not data['segment'] == 'None':
|
||||
widget_text.write(base_text + 'Segments is only available in Demucs v3. Please use \"Chunks\" instead.\n')
|
||||
else:
|
||||
pass
|
||||
self.demucs.eval()
|
||||
|
||||
if demucs_model_version == 'v3':
|
||||
self.demucs = HDemucs(sources=["drums", "bass", "other", "vocals"])
|
||||
widget_text.write(base_text + 'Loading Demucs model... ')
|
||||
update_progress(**progress_kwargs,
|
||||
step=0.05)
|
||||
path_d = Path('models/Demucs_Models/v3_repo')
|
||||
#print('What Demucs model was chosen? ', demucs_model_set_name)
|
||||
self.demucs = _gm(name=demucs_model_set_name, repo=path_d)
|
||||
widget_text.write('Done!\n')
|
||||
if 'UVR' in data['DemucsModel']:
|
||||
widget_text.write(base_text + "2 stem model selected.\n")
|
||||
if isinstance(self.demucs, BagOfModels):
|
||||
widget_text.write(base_text + f"Selected model is a bag of {len(self.demucs.models)} models.\n")
|
||||
|
||||
if data['segment'] == 'None':
|
||||
segment = None
|
||||
if isinstance(self.demucs, BagOfModels):
|
||||
if segment is not None:
|
||||
@@ -88,9 +110,29 @@ class Predictor():
|
||||
else:
|
||||
if segment is not None:
|
||||
sub.segment = segment
|
||||
|
||||
self.demucs.to(device)
|
||||
self.demucs.eval()
|
||||
else:
|
||||
try:
|
||||
segment = int(data['segment'])
|
||||
if isinstance(self.demucs, BagOfModels):
|
||||
if segment is not None:
|
||||
for sub in self.demucs.models:
|
||||
sub.segment = segment
|
||||
else:
|
||||
if segment is not None:
|
||||
sub.segment = segment
|
||||
widget_text.write(base_text + "Segments set to "f"{segment}.\n")
|
||||
except:
|
||||
segment = None
|
||||
if isinstance(self.demucs, BagOfModels):
|
||||
if segment is not None:
|
||||
for sub in self.demucs.models:
|
||||
sub.segment = segment
|
||||
else:
|
||||
if segment is not None:
|
||||
sub.segment = segment
|
||||
|
||||
self.demucs.to(device)
|
||||
self.demucs.eval()
|
||||
|
||||
update_progress(**progress_kwargs,
|
||||
step=0.1)
|
||||
@@ -646,7 +688,12 @@ class Predictor():
|
||||
if end == samples:
|
||||
break
|
||||
|
||||
sources = self.demix_demucs(segmented_mix, margin_size=margin)
|
||||
if demucs_model_version == 'v1':
|
||||
sources = self.demix_demucs_v1(segmented_mix, margin_size=margin)
|
||||
if demucs_model_version == 'v2':
|
||||
sources = self.demix_demucs_v2(segmented_mix, margin_size=margin)
|
||||
if demucs_model_version == 'v3':
|
||||
sources = self.demix_demucs(segmented_mix, margin_size=margin)
|
||||
|
||||
return sources
|
||||
|
||||
@@ -683,31 +730,94 @@ class Predictor():
|
||||
sources = np.concatenate(sources, axis=-1)
|
||||
widget_text.write('Done!\n')
|
||||
return sources
|
||||
|
||||
def demix_demucs_v1(self, mix, margin_size):
|
||||
processed = {}
|
||||
demucsitera = len(mix)
|
||||
demucsitera_calc = demucsitera * 2
|
||||
gui_progress_bar_demucs = 0
|
||||
widget_text.write(base_text + "Running Demucs v1 Inference...\n")
|
||||
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
|
||||
print(' Running Demucs Inference...')
|
||||
for nmix in mix:
|
||||
gui_progress_bar_demucs += 1
|
||||
update_progress(**progress_kwargs,
|
||||
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
|
||||
cmix = mix[nmix]
|
||||
cmix = torch.tensor(cmix, dtype=torch.float32)
|
||||
ref = cmix.mean(0)
|
||||
cmix = (cmix - ref.mean()) / ref.std()
|
||||
with torch.no_grad():
|
||||
sources = apply_model_v1(self.demucs, cmix.to(device), split=split_mode, shifts=shift_set)
|
||||
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
|
||||
sources[[0,1]] = sources[[1,0]]
|
||||
|
||||
start = 0 if nmix == 0 else margin_size
|
||||
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
|
||||
if margin_size == 0:
|
||||
end = None
|
||||
processed[nmix] = sources[:,:,start:end].copy()
|
||||
|
||||
sources = list(processed.values())
|
||||
sources = np.concatenate(sources, axis=-1)
|
||||
widget_text.write('Done!\n')
|
||||
return sources
|
||||
|
||||
def demix_demucs_v2(self, mix, margin_size):
|
||||
processed = {}
|
||||
demucsitera = len(mix)
|
||||
demucsitera_calc = demucsitera * 2
|
||||
gui_progress_bar_demucs = 0
|
||||
widget_text.write(base_text + "Running Demucs v2 Inference...\n")
|
||||
widget_text.write(base_text + "Processing "f"{len(mix)} slices... ")
|
||||
print(' Running Demucs Inference...')
|
||||
for nmix in mix:
|
||||
gui_progress_bar_demucs += 1
|
||||
update_progress(**progress_kwargs,
|
||||
step=(0.35 + (1.05/demucsitera_calc * gui_progress_bar_demucs)))
|
||||
cmix = mix[nmix]
|
||||
cmix = torch.tensor(cmix, dtype=torch.float32)
|
||||
ref = cmix.mean(0)
|
||||
cmix = (cmix - ref.mean()) / ref.std()
|
||||
shift_set = 0
|
||||
with torch.no_grad():
|
||||
sources = apply_model_v2(self.demucs, cmix.to(device), split=split_mode, overlap=overlap_set, shifts=shift_set)
|
||||
sources = (sources * ref.std() + ref.mean()).cpu().numpy()
|
||||
sources[[0,1]] = sources[[1,0]]
|
||||
|
||||
start = 0 if nmix == 0 else margin_size
|
||||
end = None if nmix == list(mix.keys())[::-1][0] else -margin_size
|
||||
if margin_size == 0:
|
||||
end = None
|
||||
processed[nmix] = sources[:,:,start:end].copy()
|
||||
|
||||
sources = list(processed.values())
|
||||
sources = np.concatenate(sources, axis=-1)
|
||||
widget_text.write('Done!\n')
|
||||
return sources
|
||||
|
||||
data = {
|
||||
# Paths
|
||||
'input_paths': None,
|
||||
'export_path': None,
|
||||
'saveFormat': 'Wav',
|
||||
# Processing Options
|
||||
'demucsmodel': True,
|
||||
'gpu': -1,
|
||||
'audfile': True,
|
||||
'chunks_d': 'Full',
|
||||
'settest': False,
|
||||
'voc_only_b': False,
|
||||
'inst_only_b': False,
|
||||
'overlap_b': 0.25,
|
||||
'shifts_b': 2,
|
||||
'segment': 'None',
|
||||
'margin': 44100,
|
||||
'split_mode': False,
|
||||
'normalize': False,
|
||||
'compensate': 1.03597672895,
|
||||
'demucs_stems': 'All Stems',
|
||||
'DemucsModel': 'mdx_extra',
|
||||
'audfile': True,
|
||||
'wavtype': 'PCM_16',
|
||||
'demucsmodel': True,
|
||||
'export_path': None,
|
||||
'gpu': -1,
|
||||
'input_paths': None,
|
||||
'inst_only_b': False,
|
||||
'margin': 44100,
|
||||
'mp3bit': '320k',
|
||||
'normalize': False,
|
||||
'overlap_b': 0.25,
|
||||
'saveFormat': 'Wav',
|
||||
'segment': 'None',
|
||||
'settest': False,
|
||||
'shifts_b': 2,
|
||||
'split_mode': False,
|
||||
'voc_only_b': False,
|
||||
'wavtype': 'PCM_16',
|
||||
}
|
||||
default_chunks = data['chunks_d']
|
||||
|
||||
@@ -756,6 +866,8 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
global shift_set
|
||||
global source_val
|
||||
global split_mode
|
||||
global demucs_model_set_name
|
||||
global demucs_model_version
|
||||
|
||||
global wav_type_set
|
||||
global flac_type_set
|
||||
@@ -817,6 +929,69 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
progress_var.set(0)
|
||||
text_widget.clear()
|
||||
button_widget.configure(state=tk.DISABLED) # Disable Button
|
||||
|
||||
|
||||
if data['DemucsModel'] == "Tasnet v1":
|
||||
demucs_model_set_name = 'tasnet.th'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Tasnet_extra v1":
|
||||
demucs_model_set_name = 'tasnet_extra.th'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Demucs v1":
|
||||
demucs_model_set_name = 'demucs.th'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Demucs v1.gz":
|
||||
demucs_model_set_name = 'demucs.th.gz'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Demucs_extra v1":
|
||||
demucs_model_set_name = 'demucs_extra.th'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Demucs_extra v1.gz":
|
||||
demucs_model_set_name = 'demucs_extra.th.gz'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Light v1":
|
||||
demucs_model_set_name = 'light.th'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Light v1.gz":
|
||||
demucs_model_set_name = 'light.th.gz'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Light_extra v1":
|
||||
demucs_model_set_name = 'light_extra.th'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Light_extra v1.gz":
|
||||
demucs_model_set_name = 'light_extra.th.gz'
|
||||
demucs_model_version = 'v1'
|
||||
elif data['DemucsModel'] == "Tasnet v2":
|
||||
demucs_model_set_name = 'tasnet-beb46fac.th'
|
||||
demucs_model_version = 'v2'
|
||||
elif data['DemucsModel'] == "Tasnet_extra v2":
|
||||
demucs_model_set_name = 'tasnet_extra-df3777b2.th'
|
||||
demucs_model_version = 'v2'
|
||||
elif data['DemucsModel'] == "Demucs48_hq v2":
|
||||
demucs_model_set_name = 'demucs48_hq-28a1282c.th'
|
||||
demucs_model_version = 'v2'
|
||||
elif data['DemucsModel'] == "Demucs v2":
|
||||
demucs_model_set_name = 'demucs-e07c671f.th'
|
||||
demucs_model_version = 'v2'
|
||||
elif data['DemucsModel'] == "Demucs_extra v2":
|
||||
demucs_model_set_name = 'demucs_extra-3646af93.th'
|
||||
demucs_model_version = 'v2'
|
||||
elif data['DemucsModel'] == "Demucs_unittest v2":
|
||||
demucs_model_set_name = 'demucs_unittest-09ebc15f.th'
|
||||
demucs_model_version = 'v2'
|
||||
elif '.ckpt' in data['DemucsModel'] and 'v2' in data['DemucsModel']:
|
||||
demucs_model_set_name = data['DemucsModel']
|
||||
demucs_model_version = 'v2'
|
||||
elif '.ckpt' in data['DemucsModel'] and 'v1' in data['DemucsModel']:
|
||||
demucs_model_set_name = data['DemucsModel']
|
||||
demucs_model_version = 'v1'
|
||||
elif '.gz' in data['DemucsModel']:
|
||||
demucs_model_set_name = data['DemucsModel']
|
||||
demucs_model_version = 'v1'
|
||||
else:
|
||||
demucs_model_set_name = data['DemucsModel']
|
||||
demucs_model_version = 'v3'
|
||||
|
||||
|
||||
try: #Load File(s)
|
||||
for file_num, music_file in tqdm(enumerate(data['input_paths'], start=1)):
|
||||
@@ -880,7 +1055,10 @@ def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress
|
||||
channel_set = int(data['channel'])
|
||||
margin_set = int(data['margin'])
|
||||
shift_set = int(data['shifts_b'])
|
||||
|
||||
split_mode = data['split_mode']
|
||||
|
||||
#print('Split? ', split_mode)
|
||||
|
||||
def determinemusicfileFolderName():
|
||||
"""
|
||||
|
||||
Reference in New Issue
Block a user