Delete demucs directory
This commit is contained in:
174
demucs/wav.py
174
demucs/wav.py
@@ -1,174 +0,0 @@
|
||||
# Copyright (c) Facebook, Inc. and its affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
from collections import OrderedDict
|
||||
import hashlib
|
||||
import math
|
||||
import json
|
||||
from pathlib import Path
|
||||
|
||||
import julius
|
||||
import torch as th
|
||||
from torch import distributed
|
||||
import torchaudio as ta
|
||||
from torch.nn import functional as F
|
||||
|
||||
from .audio import convert_audio_channels
|
||||
from .compressed import get_musdb_tracks
|
||||
|
||||
MIXTURE = "mixture"
|
||||
EXT = ".wav"
|
||||
|
||||
|
||||
def _track_metadata(track, sources):
|
||||
track_length = None
|
||||
track_samplerate = None
|
||||
for source in sources + [MIXTURE]:
|
||||
file = track / f"{source}{EXT}"
|
||||
info = ta.info(str(file))
|
||||
length = info.num_frames
|
||||
if track_length is None:
|
||||
track_length = length
|
||||
track_samplerate = info.sample_rate
|
||||
elif track_length != length:
|
||||
raise ValueError(
|
||||
f"Invalid length for file {file}: "
|
||||
f"expecting {track_length} but got {length}.")
|
||||
elif info.sample_rate != track_samplerate:
|
||||
raise ValueError(
|
||||
f"Invalid sample rate for file {file}: "
|
||||
f"expecting {track_samplerate} but got {info.sample_rate}.")
|
||||
if source == MIXTURE:
|
||||
wav, _ = ta.load(str(file))
|
||||
wav = wav.mean(0)
|
||||
mean = wav.mean().item()
|
||||
std = wav.std().item()
|
||||
|
||||
return {"length": length, "mean": mean, "std": std, "samplerate": track_samplerate}
|
||||
|
||||
|
||||
def _build_metadata(path, sources):
|
||||
meta = {}
|
||||
path = Path(path)
|
||||
for file in path.iterdir():
|
||||
meta[file.name] = _track_metadata(file, sources)
|
||||
return meta
|
||||
|
||||
|
||||
class Wavset:
|
||||
def __init__(
|
||||
self,
|
||||
root, metadata, sources,
|
||||
length=None, stride=None, normalize=True,
|
||||
samplerate=44100, channels=2):
|
||||
"""
|
||||
Waveset (or mp3 set for that matter). Can be used to train
|
||||
with arbitrary sources. Each track should be one folder inside of `path`.
|
||||
The folder should contain files named `{source}.{ext}`.
|
||||
Files will be grouped according to `sources` (each source is a list of
|
||||
filenames).
|
||||
|
||||
Sample rate and channels will be converted on the fly.
|
||||
|
||||
`length` is the sample size to extract (in samples, not duration).
|
||||
`stride` is how many samples to move by between each example.
|
||||
"""
|
||||
self.root = Path(root)
|
||||
self.metadata = OrderedDict(metadata)
|
||||
self.length = length
|
||||
self.stride = stride or length
|
||||
self.normalize = normalize
|
||||
self.sources = sources
|
||||
self.channels = channels
|
||||
self.samplerate = samplerate
|
||||
self.num_examples = []
|
||||
for name, meta in self.metadata.items():
|
||||
track_length = int(self.samplerate * meta['length'] / meta['samplerate'])
|
||||
if length is None or track_length < length:
|
||||
examples = 1
|
||||
else:
|
||||
examples = int(math.ceil((track_length - self.length) / self.stride) + 1)
|
||||
self.num_examples.append(examples)
|
||||
|
||||
def __len__(self):
|
||||
return sum(self.num_examples)
|
||||
|
||||
def get_file(self, name, source):
|
||||
return self.root / name / f"{source}{EXT}"
|
||||
|
||||
def __getitem__(self, index):
|
||||
for name, examples in zip(self.metadata, self.num_examples):
|
||||
if index >= examples:
|
||||
index -= examples
|
||||
continue
|
||||
meta = self.metadata[name]
|
||||
num_frames = -1
|
||||
offset = 0
|
||||
if self.length is not None:
|
||||
offset = int(math.ceil(
|
||||
meta['samplerate'] * self.stride * index / self.samplerate))
|
||||
num_frames = int(math.ceil(
|
||||
meta['samplerate'] * self.length / self.samplerate))
|
||||
wavs = []
|
||||
for source in self.sources:
|
||||
file = self.get_file(name, source)
|
||||
wav, _ = ta.load(str(file), frame_offset=offset, num_frames=num_frames)
|
||||
wav = convert_audio_channels(wav, self.channels)
|
||||
wavs.append(wav)
|
||||
|
||||
example = th.stack(wavs)
|
||||
example = julius.resample_frac(example, meta['samplerate'], self.samplerate)
|
||||
if self.normalize:
|
||||
example = (example - meta['mean']) / meta['std']
|
||||
if self.length:
|
||||
example = example[..., :self.length]
|
||||
example = F.pad(example, (0, self.length - example.shape[-1]))
|
||||
return example
|
||||
|
||||
|
||||
def get_wav_datasets(args, samples, sources):
|
||||
sig = hashlib.sha1(str(args.wav).encode()).hexdigest()[:8]
|
||||
metadata_file = args.metadata / (sig + ".json")
|
||||
train_path = args.wav / "train"
|
||||
valid_path = args.wav / "valid"
|
||||
if not metadata_file.is_file() and args.rank == 0:
|
||||
train = _build_metadata(train_path, sources)
|
||||
valid = _build_metadata(valid_path, sources)
|
||||
json.dump([train, valid], open(metadata_file, "w"))
|
||||
if args.world_size > 1:
|
||||
distributed.barrier()
|
||||
train, valid = json.load(open(metadata_file))
|
||||
train_set = Wavset(train_path, train, sources,
|
||||
length=samples, stride=args.data_stride,
|
||||
samplerate=args.samplerate, channels=args.audio_channels,
|
||||
normalize=args.norm_wav)
|
||||
valid_set = Wavset(valid_path, valid, [MIXTURE] + sources,
|
||||
samplerate=args.samplerate, channels=args.audio_channels,
|
||||
normalize=args.norm_wav)
|
||||
return train_set, valid_set
|
||||
|
||||
|
||||
def get_musdb_wav_datasets(args, samples, sources):
|
||||
metadata_file = args.metadata / "musdb_wav.json"
|
||||
root = args.musdb / "train"
|
||||
if not metadata_file.is_file() and args.rank == 0:
|
||||
metadata = _build_metadata(root, sources)
|
||||
json.dump(metadata, open(metadata_file, "w"))
|
||||
if args.world_size > 1:
|
||||
distributed.barrier()
|
||||
metadata = json.load(open(metadata_file))
|
||||
|
||||
train_tracks = get_musdb_tracks(args.musdb, is_wav=True, subsets=["train"], split="train")
|
||||
metadata_train = {name: meta for name, meta in metadata.items() if name in train_tracks}
|
||||
metadata_valid = {name: meta for name, meta in metadata.items() if name not in train_tracks}
|
||||
train_set = Wavset(root, metadata_train, sources,
|
||||
length=samples, stride=args.data_stride,
|
||||
samplerate=args.samplerate, channels=args.audio_channels,
|
||||
normalize=args.norm_wav)
|
||||
valid_set = Wavset(root, metadata_valid, [MIXTURE] + sources,
|
||||
samplerate=args.samplerate, channels=args.audio_channels,
|
||||
normalize=args.norm_wav)
|
||||
return train_set, valid_set
|
||||
Reference in New Issue
Block a user