word-level timestamps in transcribe() (#869)
* word-level timestamps in `transcribe()` * moving to `timing.py` * numba implementation for dtw, replacing dtw-python * triton implementation for dtw * add test for dtw implementations * triton implementation of median_filter * a simple word-level timestamps test * add scipy as dev dependency * installs an older version of Triton if CUDA < 11.4 * fix broken merge * loosen nvcc version match regex * find_alignment() function * miscellaneous improvements * skip median filtering when the input is too small * Expose punctuation options in cli and transcribe() (#973) * fix merge error * fix merge error 2 * annotating that word_timestamps is experimental --------- Co-authored-by: ryanheise <ryan@ryanheise.com>
This commit is contained in:
305
whisper/timing.py
Normal file
305
whisper/timing.py
Normal file
@@ -0,0 +1,305 @@
|
||||
import subprocess
|
||||
import warnings
|
||||
from dataclasses import dataclass
|
||||
from typing import List, TYPE_CHECKING
|
||||
|
||||
import numba
|
||||
import numpy as np
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
from .audio import HOP_LENGTH, SAMPLE_RATE, TOKENS_PER_SECOND
|
||||
from .tokenizer import Tokenizer
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from .model import Whisper
|
||||
|
||||
|
||||
def median_filter(x: torch.Tensor, filter_width: int):
|
||||
"""Apply a median filter of width `filter_width` along the last dimension of `x`"""
|
||||
pad_width = filter_width // 2
|
||||
if x.shape[-1] <= pad_width:
|
||||
# F.pad requires the padding width to be smaller than the input dimension
|
||||
return x
|
||||
|
||||
if (ndim := x.ndim) <= 2:
|
||||
# `F.pad` does not support 1D or 2D inputs for reflect padding but supports 3D and 4D
|
||||
x = x[None, None, :]
|
||||
|
||||
assert filter_width > 0 and filter_width % 2 == 1, "`filter_width` should be an odd number"
|
||||
|
||||
result = None
|
||||
x = F.pad(x, (filter_width // 2, filter_width // 2, 0, 0), mode="reflect")
|
||||
if x.is_cuda:
|
||||
try:
|
||||
from .triton_ops import median_filter_cuda
|
||||
result = median_filter_cuda(x, filter_width)
|
||||
except (RuntimeError, subprocess.CalledProcessError):
|
||||
warnings.warn(
|
||||
"Failed to launch Triton kernels, likely due to missing CUDA toolkit; "
|
||||
"falling back to a slower median kernel implementation..."
|
||||
)
|
||||
|
||||
if result is None:
|
||||
# sort() is faster than torch.median (https://github.com/pytorch/pytorch/issues/51450)
|
||||
result = x.unfold(-1, filter_width, 1).sort()[0][..., filter_width // 2]
|
||||
|
||||
if ndim <= 2:
|
||||
result = result[0, 0]
|
||||
|
||||
return result
|
||||
|
||||
@numba.jit
|
||||
def backtrace(trace: np.ndarray):
|
||||
i = trace.shape[0] - 1
|
||||
j = trace.shape[1] - 1
|
||||
trace[0, :] = 2
|
||||
trace[:, 0] = 1
|
||||
|
||||
result = []
|
||||
while i > 0 or j > 0:
|
||||
result.append((i - 1, j - 1))
|
||||
|
||||
if trace[i, j] == 0:
|
||||
i -= 1
|
||||
j -= 1
|
||||
elif trace[i, j] == 1:
|
||||
i -= 1
|
||||
elif trace[i, j] == 2:
|
||||
j -= 1
|
||||
else:
|
||||
raise ValueError("Unexpected trace[i, j]")
|
||||
|
||||
result = np.array(result)
|
||||
return result[::-1, :].T
|
||||
|
||||
|
||||
@numba.jit(nopython=True, parallel=True)
|
||||
def dtw_cpu(x: np.ndarray):
|
||||
N, M = x.shape
|
||||
cost = np.ones((N + 1, M + 1), dtype=np.float32) * np.inf
|
||||
trace = -np.ones((N + 1, M + 1), dtype=np.float32)
|
||||
|
||||
cost[0, 0] = 0
|
||||
for j in range(1, M + 1):
|
||||
for i in range(1, N + 1):
|
||||
c0 = cost[i - 1, j - 1]
|
||||
c1 = cost[i - 1, j]
|
||||
c2 = cost[i, j - 1]
|
||||
|
||||
if c0 < c1 and c0 < c2:
|
||||
c, t = c0, 0
|
||||
elif c1 < c0 and c1 < c2:
|
||||
c, t = c1, 1
|
||||
else:
|
||||
c, t = c2, 2
|
||||
|
||||
cost[i, j] = x[i - 1, j - 1] + c
|
||||
trace[i, j] = t
|
||||
|
||||
return backtrace(trace)
|
||||
|
||||
|
||||
def dtw_cuda(x, BLOCK_SIZE=1024):
|
||||
from .triton_ops import dtw_kernel
|
||||
|
||||
M, N = x.shape
|
||||
assert M < BLOCK_SIZE, f"M should be smaller than {BLOCK_SIZE=}"
|
||||
|
||||
x_skew = F.pad(x, (0, M + 1), value=np.inf).flatten()[: M * (N + M)].reshape(M, N + M)
|
||||
x_skew = x_skew.T.contiguous()
|
||||
cost = torch.ones(N + M + 2, M + 2) * np.inf
|
||||
cost[0, 0] = 0
|
||||
cost = cost.cuda()
|
||||
trace = torch.zeros_like(cost, dtype=torch.int32)
|
||||
|
||||
dtw_kernel[(1,)](
|
||||
cost,
|
||||
trace,
|
||||
x_skew,
|
||||
x_skew.stride(0),
|
||||
cost.stride(0),
|
||||
trace.stride(0),
|
||||
N,
|
||||
M,
|
||||
BLOCK_SIZE=BLOCK_SIZE
|
||||
)
|
||||
|
||||
trace = trace.T.flatten()[:(M + 1) * (M + N + 3)].reshape(M + 1, M + N + 3)[:, :N + 1]
|
||||
return backtrace(trace.cpu().numpy())
|
||||
|
||||
|
||||
def dtw(x: torch.Tensor) -> np.ndarray:
|
||||
if x.is_cuda:
|
||||
try:
|
||||
return dtw_cuda(x)
|
||||
except (RuntimeError, subprocess.CalledProcessError):
|
||||
warnings.warn(
|
||||
"Failed to launch Triton kernels, likely due to missing CUDA toolkit; "
|
||||
"falling back to a slower DTW implementation..."
|
||||
)
|
||||
|
||||
return dtw_cpu(x.double().cpu().numpy())
|
||||
|
||||
|
||||
@dataclass
|
||||
class WordTiming:
|
||||
word: str
|
||||
tokens: List[int]
|
||||
start: float
|
||||
end: float
|
||||
probability: float
|
||||
|
||||
|
||||
def find_alignment(
|
||||
model: "Whisper",
|
||||
tokenizer: Tokenizer,
|
||||
text_tokens: List[int],
|
||||
mel: torch.Tensor,
|
||||
num_frames: int,
|
||||
*,
|
||||
medfilt_width: int = 7,
|
||||
qk_scale: float = 1.0,
|
||||
) -> List[WordTiming]:
|
||||
tokens = torch.tensor(
|
||||
[
|
||||
*tokenizer.sot_sequence,
|
||||
tokenizer.no_timestamps,
|
||||
*text_tokens,
|
||||
tokenizer.eot,
|
||||
]
|
||||
).to(model.device)
|
||||
|
||||
# install hooks on the cross attention layers to retrieve the attention weights
|
||||
QKs = [None] * model.dims.n_text_layer
|
||||
hooks = [
|
||||
block.cross_attn.register_forward_hook(
|
||||
lambda _, ins, outs, index=i: QKs.__setitem__(index, outs[-1][0])
|
||||
)
|
||||
for i, block in enumerate(model.decoder.blocks)
|
||||
]
|
||||
|
||||
with torch.no_grad():
|
||||
logits = model(mel.unsqueeze(0), tokens.unsqueeze(0))[0]
|
||||
token_probs = logits[len(tokenizer.sot_sequence):, :tokenizer.eot].softmax(dim=-1)
|
||||
text_token_probs = token_probs[np.arange(len(text_tokens)), text_tokens].tolist()
|
||||
|
||||
for hook in hooks:
|
||||
hook.remove()
|
||||
|
||||
# heads * tokens * frames
|
||||
weights = torch.stack([QKs[l][h] for l, h in model.alignment_heads.indices().T])
|
||||
weights = weights[:, :, : num_frames // 2]
|
||||
weights = (weights * qk_scale).softmax(dim=-1)
|
||||
std, mean = torch.std_mean(weights, dim=-2, keepdim=True, unbiased=False)
|
||||
weights = (weights - mean) / std
|
||||
weights = median_filter(weights, medfilt_width)
|
||||
|
||||
matrix = weights.mean(axis=0)
|
||||
matrix = matrix[len(tokenizer.sot_sequence):-1]
|
||||
text_indices, time_indices = dtw(-matrix)
|
||||
|
||||
words, word_tokens = tokenizer.split_to_word_tokens(text_tokens + [tokenizer.eot])
|
||||
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
|
||||
|
||||
jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)
|
||||
jump_times = time_indices[jumps] / TOKENS_PER_SECOND
|
||||
start_times = jump_times[word_boundaries[:-1]]
|
||||
end_times = jump_times[word_boundaries[1:]]
|
||||
word_probabilities = [
|
||||
np.mean(text_token_probs[i:j]) for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
|
||||
]
|
||||
|
||||
# hack: ensure the first and second word is not longer than twice the median word duration.
|
||||
# a better segmentation algorithm based on VAD should be able to replace this.
|
||||
word_durations = end_times - start_times
|
||||
word_durations = word_durations[word_durations.nonzero()]
|
||||
if len(word_durations) > 0:
|
||||
median_duration = np.median(word_durations)
|
||||
max_duration = median_duration * 2
|
||||
if len(word_durations) >= 2 and word_durations[1] > max_duration:
|
||||
end_times[0] = start_times[1] = max(end_times[2] / 2, end_times[2] - max_duration)
|
||||
if len(word_durations) >= 1 and end_times[0] - start_times[0] > max_duration:
|
||||
start_times[0] = max(0, end_times[0] - max_duration)
|
||||
|
||||
return [
|
||||
WordTiming(word, tokens, start, end, probability)
|
||||
for word, tokens, start, end, probability in zip(
|
||||
words, word_tokens, start_times, end_times, word_probabilities
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
def merge_punctuations(alignment: List[WordTiming], prepended: str, appended: str):
|
||||
# merge prepended punctuations
|
||||
i = len(alignment) - 2
|
||||
j = len(alignment) - 1
|
||||
while i >= 0:
|
||||
previous = alignment[i]
|
||||
following = alignment[j]
|
||||
if previous.word.startswith(" ") and previous.word.strip() in prepended:
|
||||
# prepend it to the following word
|
||||
following.word = previous.word + following.word
|
||||
following.tokens = previous.tokens + following.tokens
|
||||
previous.word = ""
|
||||
previous.tokens = []
|
||||
else:
|
||||
j = i
|
||||
i -= 1
|
||||
|
||||
# merge appended punctuations
|
||||
i = 0
|
||||
j = 1
|
||||
while j < len(alignment):
|
||||
previous = alignment[i]
|
||||
following = alignment[j]
|
||||
if not previous.word.endswith(" ") and following.word in appended:
|
||||
# append it to the previous word
|
||||
previous.word = previous.word + following.word
|
||||
previous.tokens = previous.tokens + following.tokens
|
||||
following.word = ""
|
||||
following.tokens = []
|
||||
else:
|
||||
i = j
|
||||
j += 1
|
||||
|
||||
|
||||
def add_word_timestamps(
|
||||
*,
|
||||
segments: List[dict],
|
||||
model: "Whisper",
|
||||
tokenizer: Tokenizer,
|
||||
mel: torch.Tensor,
|
||||
num_frames: int,
|
||||
prepend_punctuations: str = "\"\'“¿([{-",
|
||||
append_punctuations: str = "\"\'.。,,!!??::”)]}、",
|
||||
**hyperparams,
|
||||
):
|
||||
if len(segments) == 0:
|
||||
return
|
||||
|
||||
text_tokens = [t for segment in segments for t in segment["tokens"]]
|
||||
alignment = find_alignment(model, tokenizer, text_tokens, mel, num_frames, **hyperparams)
|
||||
merge_punctuations(alignment, prepend_punctuations, append_punctuations)
|
||||
|
||||
time_offset = segments[0]["seek"] * HOP_LENGTH / SAMPLE_RATE
|
||||
token_sources = np.repeat(np.arange(len(segments)), [len(s["tokens"]) for s in segments])
|
||||
|
||||
for segment in segments:
|
||||
segment["words"] = []
|
||||
|
||||
word_boundaries = np.pad(np.cumsum([len(w.tokens) for w in alignment]), (1, 0))
|
||||
for i, timing in enumerate(alignment):
|
||||
if timing.word:
|
||||
segment = segments[token_sources[word_boundaries[i]]]
|
||||
start = round(time_offset + timing.start, 2)
|
||||
end = round(time_offset + timing.end, 2)
|
||||
segment["words"].append(
|
||||
dict(word=timing.word, start=start, end=end, probability=timing.probability)
|
||||
)
|
||||
|
||||
for segment in segments:
|
||||
if len(words := segment["words"]) > 0:
|
||||
# adjust the segment-level timestamps based on the word-level timestamps
|
||||
segment["start"] = words[0]["start"]
|
||||
segment["end"] = words[-1]["end"]
|
||||
Reference in New Issue
Block a user