apply formatting with black (#1038)

* applying black (with the default 88-column limit)

* add flake8

* add isort

* fix isort
This commit is contained in:
Jong Wook Kim
2023-03-06 18:50:37 -05:00
committed by GitHub
parent 500d0fe966
commit b80bcf610d
21 changed files with 533 additions and 227 deletions

View File

@@ -2,7 +2,7 @@ import os.path
import numpy as np
from whisper.audio import load_audio, log_mel_spectrogram, SAMPLE_RATE
from whisper.audio import SAMPLE_RATE, load_audio, log_mel_spectrogram
def test_audio():

View File

@@ -1,7 +1,10 @@
import pytest
from whisper.normalizers import EnglishTextNormalizer
from whisper.normalizers.english import EnglishNumberNormalizer, EnglishSpellingNormalizer
from whisper.normalizers.english import (
EnglishNumberNormalizer,
EnglishSpellingNormalizer,
)
@pytest.mark.parametrize("std", [EnglishNumberNormalizer(), EnglishTextNormalizer()])

View File

@@ -1,16 +1,21 @@
import pytest
import numpy as np
import pytest
import scipy.ndimage
import torch
from whisper.timing import dtw_cpu, dtw_cuda, median_filter
sizes = [
(10, 20), (32, 16), (123, 1500), (234, 189),
(10, 20),
(32, 16),
(123, 1500),
(234, 189),
]
shapes = [
(10,), (1, 15), (4, 5, 345), (6, 12, 240, 512),
(10,),
(1, 15),
(4, 5, 345),
(6, 12, 240, 512),
]
@@ -68,8 +73,12 @@ def test_median_filter(shape):
# using np.pad to reflect-pad, because Scipy's behavior is different near the edges.
pad_width = filter_width // 2
padded_x = np.pad(x, [(0, 0)] * (x.ndim - 1) + [(pad_width, pad_width)], mode="reflect")
scipy_filtered = scipy.ndimage.median_filter(padded_x, [1] * (x.ndim - 1) + [filter_width])
padded_x = np.pad(
x, [(0, 0)] * (x.ndim - 1) + [(pad_width, pad_width)], mode="reflect"
)
scipy_filtered = scipy.ndimage.median_filter(
padded_x, [1] * (x.ndim - 1) + [filter_width]
)
scipy_filtered = scipy_filtered[..., pad_width:-pad_width]
assert np.allclose(filtered, scipy_filtered)

View File

@@ -13,7 +13,9 @@ def test_transcribe(model_name: str):
audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac")
language = "en" if model_name.endswith(".en") else None
result = model.transcribe(audio_path, language=language, temperature=0.0, word_timestamps=True)
result = model.transcribe(
audio_path, language=language, temperature=0.0, word_timestamps=True
)
assert result["language"] == "en"
transcription = result["text"].lower()