增加刷新 openai embedding 功能

This commit is contained in:
2024-09-11 18:41:44 +08:00
parent 09b22517df
commit b2ed1394e0
5 changed files with 21490 additions and 0 deletions

175
cucyuqing/cmd/embedding.py Normal file
View File

@@ -0,0 +1,175 @@
import datetime
import asyncio
import tqdm
import os
from tokenizers import Tokenizer
import openai
import hashlib
from pydantic import BaseModel
from typing import Any, Literal
from cucyuqing.pg import pool, get_cur
from cucyuqing.config import OPENAI_API_KEY, OPENAI_BASE_URL
EmbeddingModel = Literal["acge-large-zh", "text-embedding-3-large"]
embedding_client = openai.AsyncOpenAI(
api_key=OPENAI_API_KEY,
base_url=OPENAI_BASE_URL,
)
tokenizer = Tokenizer.from_file("cucyuqing/res/acge-large-zh/tokenizer.json")
def get_token_length(text: str) -> int:
"""使用 openai 提供的 tokenizer **估算** token 长度"""
return len(tokenizer.encode(text).tokens)
class Task(BaseModel):
id: int
text: str
hash: str
embedding: list[float] | None
def hash_text(text: str, model: EmbeddingModel) -> str:
"""计算文本的哈希值"""
return hashlib.md5((text + "|" + model).encode()).hexdigest()
def truncate_text(text: str, max_length: int) -> str:
"""截断文本"""
tokens = tokenizer.encode(text).tokens[0:max_length]
return ''.join(tokens)
async def get_embeddings(
texts: list[str],
model: EmbeddingModel,
threads: int = 1,
quiet: bool = False,
) -> list[list[float]]:
"""获取embeddings函数
参数:
- text: 文本列表
- threads: 并发调用embedding接口线程数
- quiet: 是否关闭输出
"""
# 针对 acge-large-zh 模型,需要将文本截断 1024 - 200
if model == "acge-large-zh":
texts = [truncate_text(text, 1024 - 2) for text in texts]
# 构建任务列表
ids = list(range(len(texts)))
hashes = [hash_text(i, model) for i in texts]
embeddings = (get_embedding_from_cache(hash) for hash in hashes)
embeddings = tqdm.tqdm(
embeddings, desc="Query embeddings cache", disable=quiet, total=len(texts)
)
tasks: list[Task] = [
Task(id=id, text=t, hash=hash, embedding=await embedding)
for id, t, hash, embedding in zip(ids, texts, hashes, embeddings)
]
# 筛选出从缓存中查询不到的 embedding
query: list[Task] = [t for t in tasks if t.embedding is None]
# 将 query 切分称多个 batch, 每个 batch 的长度不超过过 4096, batch_size 不超过 32
max_batch_token_length = 8192
batch_query: list[list[Task]] = []
batch_token_length = 0 # TEMP
iter_batch: list[Task] = [] # TEMP
for q in query:
batch_token_length += get_token_length(q.text)
# 该批次已满,将该批次加入 batch_query
if batch_token_length > max_batch_token_length or len(iter_batch) >= 32:
batch_query.append(iter_batch)
iter_batch = [q]
batch_token_length = get_token_length(q.text)
continue
iter_batch.append(q)
# 最后收尾
if iter_batch:
batch_query.append(iter_batch)
# 定义进度条
pbar = tqdm.tqdm(
batch_query, desc="Requesting embeddings", disable=quiet, total=len(query)
)
# 定义 consumer
async def consumer() -> None:
while batch_query:
query = batch_query.pop()
if model == "acge-large-zh":
resp = await embedding_client.embeddings.create(
input=[q.text for q in query],
model=model,
)
elif model == "text-embedding-3-large":
resp = await embedding_client.embeddings.create(
input=[q.text for q in query],
model="text-embedding-3-large",
dimensions=1024,
)
else:
raise ValueError(
f"Unknown model: {model} while calculating similarities"
)
data = resp.data
for q, d in zip(query, data):
q.embedding = d.embedding
pbar.update(1)
# 并发启动
await asyncio.gather(*[consumer() for _ in range(threads)])
# 根据 task id 排序
ret: list[Task] = sorted(tasks, key=lambda x: x.id)
# 检查
assert len(tasks) == len(ret)
assert all(i.embedding is not None for i in ret)
return [i.embedding for i in ret] # type: ignore
async def get_embedding_from_cache(hash: str) -> list[float] | None:
"""根据 哈希 从缓存中查询 embedding
hash: 查询任务和哈希值,由文本和模型名称计算得到
"""
return None
res = await redis_client.get(f"embedding-{hash}")
if res is None:
return None
if not isinstance(res, str):
raise ValueError(f"Unexpected type: {type(res)}")
return ujson.loads(res)
async def main():
await pool.open()
async with get_cur() as cur:
# 这里选择 embedding_updated_at is null 使用索引避免全表扫描
await cur.execute("SELECT id, title, content from risk_news where embedding_updated_at is null limit 1000")
docs = await cur.fetchall()
if not docs:
print(datetime.datetime.now(), "No data to update")
await asyncio.sleep(60)
return
embeddings = await get_embeddings([doc[1] + " " + doc[2] for doc in docs], "acge-large-zh")
async with get_cur() as cur:
for doc, embedding in tqdm.tqdm(zip(docs, embeddings), total=min(len(docs), len(embeddings)), desc="Update embeddings"):
await cur.execute("UPDATE risk_news SET embedding = %s, embedding_updated_at = now() where id = %s", (embedding, doc[0]))
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -22,3 +22,5 @@ def must_get_env(key: str):
ES_API = get_env_with_default("ES_API", "http://192.168.1.45:1444")
PG_DSN = must_get_env("PG_DSN")
MYSQL_DSN = must_get_env("MYSQL_DSN")
OPENAI_API_KEY = must_get_env("OPENAI_API_KEY")
OPENAI_BASE_URL = get_env_with_default("OPENAI_BASE_URL", "https://api.openai.com/v1")

View File

@@ -0,0 +1,32 @@
{
"_name_or_path": "acge",
"architectures": [
"BertModel"
],
"attention_probs_dropout_prob": 0.1,
"classifier_dropout": null,
"directionality": "bidi",
"gradient_checkpointing": false,
"hidden_act": "gelu",
"hidden_dropout_prob": 0.1,
"hidden_size": 1024,
"initializer_range": 0.02,
"intermediate_size": 4096,
"layer_norm_eps": 1e-12,
"max_position_embeddings": 1024,
"model_type": "bert",
"num_attention_heads": 16,
"num_hidden_layers": 24,
"pad_token_id": 0,
"pooler_fc_size": 768,
"pooler_num_attention_heads": 12,
"pooler_num_fc_layers": 3,
"pooler_size_per_head": 128,
"pooler_type": "first_token_transform",
"position_embedding_type": "absolute",
"torch_dtype": "float16",
"transformers_version": "4.28.0",
"type_vocab_size": 2,
"use_cache": true,
"vocab_size": 21128
}

File diff suppressed because it is too large Load Diff

View File

@@ -5,3 +5,6 @@ aiohttp
fastapi
pydantic
databases[aiomysql]
openai
tiktoken
tokenizers