Support VAD filter (#95)
* Support VAD filter * Generalize function collect_samples * Define AudioSegment class * Only pass prompt and prefix to the first chunk * Add dict argument vad_parameters * Fix isort format * Rename method * Update README * Add shortcut when the chunk offset is 0 * Reword readme * Fix end property * Concatenate the speech chunks * Cleanup diff * Increase default speech pad * Update README * Increase default speech pad
This commit is contained in:
1
MANIFEST.in
Normal file
1
MANIFEST.in
Normal file
@@ -0,0 +1 @@
|
||||
include faster_whisper/assets/silero_vad.onnx
|
||||
16
README.md
16
README.md
@@ -97,6 +97,22 @@ for segment in segments:
|
||||
print("[%.2fs -> %.2fs] %s" % (word.start, word.end, word.word))
|
||||
```
|
||||
|
||||
#### VAD filter
|
||||
|
||||
The library integrates the [Silero VAD](https://github.com/snakers4/silero-vad) model to filter out parts of the audio without speech:
|
||||
|
||||
```python
|
||||
segments, _ = model.transcribe("audio.mp3", vad_filter=True)
|
||||
```
|
||||
|
||||
The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the function [`get_speech_timestamps`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:
|
||||
|
||||
```python
|
||||
segments, _ = model.transcribe("audio.mp3", vad_filter=True, vad_parameters=dict(min_silence_duration_ms=500))
|
||||
```
|
||||
|
||||
#### Going further
|
||||
|
||||
See more model and transcription options in the [`WhisperModel`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.
|
||||
|
||||
### CLI
|
||||
|
||||
BIN
faster_whisper/assets/silero_vad.onnx
Normal file
BIN
faster_whisper/assets/silero_vad.onnx
Normal file
Binary file not shown.
@@ -12,6 +12,11 @@ from faster_whisper.audio import decode_audio
|
||||
from faster_whisper.feature_extractor import FeatureExtractor
|
||||
from faster_whisper.tokenizer import Tokenizer
|
||||
from faster_whisper.utils import download_model
|
||||
from faster_whisper.vad import (
|
||||
SpeechTimestampsMap,
|
||||
collect_chunks,
|
||||
get_speech_timestamps,
|
||||
)
|
||||
|
||||
|
||||
class Word(NamedTuple):
|
||||
@@ -152,6 +157,8 @@ class WhisperModel:
|
||||
word_timestamps: bool = False,
|
||||
prepend_punctuations: str = "\"'“¿([{-",
|
||||
append_punctuations: str = "\"'.。,,!!??::”)]}、",
|
||||
vad_filter: bool = False,
|
||||
vad_parameters: Optional[dict] = None,
|
||||
) -> Tuple[Iterable[Segment], AudioInfo]:
|
||||
"""Transcribes an input file.
|
||||
|
||||
@@ -192,6 +199,11 @@ class WhisperModel:
|
||||
with the next word
|
||||
append_punctuations: If word_timestamps is True, merge these punctuation symbols
|
||||
with the previous word
|
||||
vad_filter: Enable the voice activity detection (VAD) to filter out parts of the audio
|
||||
without speech. This step is using the Silero VAD model
|
||||
https://github.com/snakers4/silero-vad.
|
||||
vad_parameters: Dictionary of Silero VAD parameters (see available parameters and
|
||||
default values in the function `get_speech_timestamps`).
|
||||
|
||||
Returns:
|
||||
A tuple with:
|
||||
@@ -205,6 +217,14 @@ class WhisperModel:
|
||||
)
|
||||
|
||||
duration = audio.shape[0] / self.feature_extractor.sampling_rate
|
||||
|
||||
if vad_filter:
|
||||
vad_parameters = {} if vad_parameters is None else vad_parameters
|
||||
speech_chunks = get_speech_timestamps(audio, **vad_parameters)
|
||||
audio = collect_chunks(audio, speech_chunks)
|
||||
else:
|
||||
speech_chunks = None
|
||||
|
||||
features = self.feature_extractor(audio)
|
||||
|
||||
encoder_output = None
|
||||
@@ -254,6 +274,11 @@ class WhisperModel:
|
||||
|
||||
segments = self.generate_segments(features, tokenizer, options, encoder_output)
|
||||
|
||||
if speech_chunks:
|
||||
segments = restore_speech_timestamps(
|
||||
segments, speech_chunks, self.feature_extractor.sampling_rate
|
||||
)
|
||||
|
||||
audio_info = AudioInfo(
|
||||
language=language,
|
||||
language_probability=language_probability,
|
||||
@@ -678,6 +703,36 @@ class WhisperModel:
|
||||
]
|
||||
|
||||
|
||||
def restore_speech_timestamps(
|
||||
segments: Iterable[Segment],
|
||||
speech_chunks: List[dict],
|
||||
sampling_rate: int,
|
||||
) -> Iterable[Segment]:
|
||||
ts_map = SpeechTimestampsMap(speech_chunks, sampling_rate)
|
||||
|
||||
for segment in segments:
|
||||
if segment.words:
|
||||
words = []
|
||||
for word in segment.words:
|
||||
# Ensure the word start and end times are resolved to the same chunk.
|
||||
chunk_index = ts_map.get_chunk_index(word.start)
|
||||
word = word._replace(
|
||||
start=ts_map.get_original_time(word.start, chunk_index),
|
||||
end=ts_map.get_original_time(word.end, chunk_index),
|
||||
)
|
||||
words.append(word)
|
||||
else:
|
||||
words = segment.words
|
||||
|
||||
segment = segment._replace(
|
||||
start=ts_map.get_original_time(segment.start),
|
||||
end=ts_map.get_original_time(segment.end),
|
||||
words=words,
|
||||
)
|
||||
|
||||
yield segment
|
||||
|
||||
|
||||
def get_ctranslate2_storage(segment: np.ndarray) -> ctranslate2.StorageView:
|
||||
segment = np.ascontiguousarray(segment)
|
||||
segment = ctranslate2.StorageView.from_array(segment)
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
import os
|
||||
|
||||
from typing import Optional
|
||||
|
||||
import huggingface_hub
|
||||
@@ -18,6 +20,11 @@ _MODELS = (
|
||||
)
|
||||
|
||||
|
||||
def get_assets_path():
|
||||
"""Returns the path to the assets directory."""
|
||||
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
|
||||
|
||||
|
||||
def download_model(size: str, output_dir: Optional[str] = None):
|
||||
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
|
||||
|
||||
|
||||
268
faster_whisper/vad.py
Normal file
268
faster_whisper/vad.py
Normal file
@@ -0,0 +1,268 @@
|
||||
import bisect
|
||||
import functools
|
||||
import os
|
||||
import warnings
|
||||
|
||||
from typing import List, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
from faster_whisper.utils import get_assets_path
|
||||
|
||||
# The code below is adapted from https://github.com/snakers4/silero-vad.
|
||||
|
||||
|
||||
def get_speech_timestamps(
|
||||
audio: np.ndarray,
|
||||
*,
|
||||
threshold: float = 0.5,
|
||||
min_speech_duration_ms: int = 250,
|
||||
max_speech_duration_s: float = float("inf"),
|
||||
min_silence_duration_ms: int = 2000,
|
||||
window_size_samples: int = 1024,
|
||||
speech_pad_ms: int = 200,
|
||||
) -> List[dict]:
|
||||
"""This method is used for splitting long audios into speech chunks using silero VAD.
|
||||
|
||||
Args:
|
||||
audio: One dimensional float array.
|
||||
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk,
|
||||
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
|
||||
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
|
||||
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out.
|
||||
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer
|
||||
than max_speech_duration_s will be split at the timestamp of the last silence that
|
||||
lasts more than 100s (if any), to prevent agressive cutting. Otherwise, they will be
|
||||
split aggressively just before max_speech_duration_s.
|
||||
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
|
||||
before separating it
|
||||
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
|
||||
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
|
||||
Values other than these may affect model perfomance!!
|
||||
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
|
||||
|
||||
Returns:
|
||||
List of dicts containing begin and end samples of each speech chunk.
|
||||
"""
|
||||
if window_size_samples not in [512, 1024, 1536]:
|
||||
warnings.warn(
|
||||
"Unusual window_size_samples! Supported window_size_samples:\n"
|
||||
" - [512, 1024, 1536] for 16000 sampling_rate"
|
||||
)
|
||||
|
||||
sampling_rate = 16000
|
||||
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
|
||||
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
|
||||
max_speech_samples = (
|
||||
sampling_rate * max_speech_duration_s
|
||||
- window_size_samples
|
||||
- 2 * speech_pad_samples
|
||||
)
|
||||
min_silence_samples = sampling_rate * min_silence_duration_ms / 1000
|
||||
min_silence_samples_at_max_speech = sampling_rate * 98 / 1000
|
||||
|
||||
audio_length_samples = len(audio)
|
||||
|
||||
model = get_vad_model()
|
||||
state = model.get_initial_state(batch_size=1)
|
||||
|
||||
speech_probs = []
|
||||
for current_start_sample in range(0, audio_length_samples, window_size_samples):
|
||||
chunk = audio[current_start_sample : current_start_sample + window_size_samples]
|
||||
if len(chunk) < window_size_samples:
|
||||
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
|
||||
speech_prob, state = model(chunk, state, sampling_rate)
|
||||
speech_probs.append(speech_prob)
|
||||
|
||||
triggered = False
|
||||
speeches = []
|
||||
current_speech = {}
|
||||
neg_threshold = threshold - 0.15
|
||||
|
||||
# to save potential segment end (and tolerate some silence)
|
||||
temp_end = 0
|
||||
# to save potential segment limits in case of maximum segment size reached
|
||||
prev_end = next_start = 0
|
||||
|
||||
for i, speech_prob in enumerate(speech_probs):
|
||||
if (speech_prob >= threshold) and temp_end:
|
||||
temp_end = 0
|
||||
if next_start < prev_end:
|
||||
next_start = window_size_samples * i
|
||||
|
||||
if (speech_prob >= threshold) and not triggered:
|
||||
triggered = True
|
||||
current_speech["start"] = window_size_samples * i
|
||||
continue
|
||||
|
||||
if (
|
||||
triggered
|
||||
and (window_size_samples * i) - current_speech["start"] > max_speech_samples
|
||||
):
|
||||
if prev_end:
|
||||
current_speech["end"] = prev_end
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
# previously reached silence (< neg_thres) and is still not speech (< thres)
|
||||
if next_start < prev_end:
|
||||
triggered = False
|
||||
else:
|
||||
current_speech["start"] = next_start
|
||||
prev_end = next_start = temp_end = 0
|
||||
else:
|
||||
current_speech["end"] = window_size_samples * i
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
prev_end = next_start = temp_end = 0
|
||||
triggered = False
|
||||
continue
|
||||
|
||||
if (speech_prob < neg_threshold) and triggered:
|
||||
if not temp_end:
|
||||
temp_end = window_size_samples * i
|
||||
# condition to avoid cutting in very short silence
|
||||
if (window_size_samples * i) - temp_end > min_silence_samples_at_max_speech:
|
||||
prev_end = temp_end
|
||||
if (window_size_samples * i) - temp_end < min_silence_samples:
|
||||
continue
|
||||
else:
|
||||
current_speech["end"] = temp_end
|
||||
if (
|
||||
current_speech["end"] - current_speech["start"]
|
||||
) > min_speech_samples:
|
||||
speeches.append(current_speech)
|
||||
current_speech = {}
|
||||
prev_end = next_start = temp_end = 0
|
||||
triggered = False
|
||||
continue
|
||||
|
||||
if (
|
||||
current_speech
|
||||
and (audio_length_samples - current_speech["start"]) > min_speech_samples
|
||||
):
|
||||
current_speech["end"] = audio_length_samples
|
||||
speeches.append(current_speech)
|
||||
|
||||
for i, speech in enumerate(speeches):
|
||||
if i == 0:
|
||||
speech["start"] = int(max(0, speech["start"] - speech_pad_samples))
|
||||
if i != len(speeches) - 1:
|
||||
silence_duration = speeches[i + 1]["start"] - speech["end"]
|
||||
if silence_duration < 2 * speech_pad_samples:
|
||||
speech["end"] += int(silence_duration // 2)
|
||||
speeches[i + 1]["start"] = int(
|
||||
max(0, speeches[i + 1]["start"] - silence_duration // 2)
|
||||
)
|
||||
else:
|
||||
speech["end"] = int(
|
||||
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
||||
)
|
||||
speeches[i + 1]["start"] = int(
|
||||
max(0, speeches[i + 1]["start"] - speech_pad_samples)
|
||||
)
|
||||
else:
|
||||
speech["end"] = int(
|
||||
min(audio_length_samples, speech["end"] + speech_pad_samples)
|
||||
)
|
||||
|
||||
return speeches
|
||||
|
||||
|
||||
def collect_chunks(audio: np.ndarray, chunks: List[dict]) -> np.ndarray:
|
||||
"""Collects and concatenates audio chunks."""
|
||||
if not chunks:
|
||||
return np.array([], dtype=np.float32)
|
||||
|
||||
return np.concatenate([audio[chunk["start"] : chunk["end"]] for chunk in chunks])
|
||||
|
||||
|
||||
class SpeechTimestampsMap:
|
||||
"""Helper class to restore original speech timestamps."""
|
||||
|
||||
def __init__(self, chunks: List[dict], sampling_rate: int, time_precision: int = 2):
|
||||
self.sampling_rate = sampling_rate
|
||||
self.time_precision = time_precision
|
||||
self.chunk_end_sample = []
|
||||
self.total_silence_before = []
|
||||
|
||||
previous_end = 0
|
||||
silent_samples = 0
|
||||
|
||||
for chunk in chunks:
|
||||
silent_samples += chunk["start"] - previous_end
|
||||
previous_end = chunk["end"]
|
||||
|
||||
self.chunk_end_sample.append(chunk["end"] - silent_samples)
|
||||
self.total_silence_before.append(silent_samples / sampling_rate)
|
||||
|
||||
def get_original_time(
|
||||
self,
|
||||
time: float,
|
||||
chunk_index: Optional[int] = None,
|
||||
) -> float:
|
||||
if chunk_index is None:
|
||||
chunk_index = self.get_chunk_index(time)
|
||||
|
||||
total_silence_before = self.total_silence_before[chunk_index]
|
||||
return round(total_silence_before + time, self.time_precision)
|
||||
|
||||
def get_chunk_index(self, time: float) -> int:
|
||||
sample = int(time * self.sampling_rate)
|
||||
return bisect.bisect(self.chunk_end_sample, sample)
|
||||
|
||||
|
||||
@functools.lru_cache
|
||||
def get_vad_model():
|
||||
"""Returns the VAD model instance."""
|
||||
path = os.path.join(get_assets_path(), "silero_vad.onnx")
|
||||
return SileroVADModel(path)
|
||||
|
||||
|
||||
class SileroVADModel:
|
||||
def __init__(self, path):
|
||||
try:
|
||||
import onnxruntime
|
||||
except ImportError as e:
|
||||
raise RuntimeError(
|
||||
"Applying the VAD filter requires the onnxruntime package"
|
||||
) from e
|
||||
|
||||
opts = onnxruntime.SessionOptions()
|
||||
opts.inter_op_num_threads = 1
|
||||
opts.intra_op_num_threads = 1
|
||||
opts.log_severity_level = 4
|
||||
|
||||
self.session = onnxruntime.InferenceSession(
|
||||
path,
|
||||
providers=["CPUExecutionProvider"],
|
||||
sess_options=opts,
|
||||
)
|
||||
|
||||
def get_initial_state(self, batch_size: int):
|
||||
h = np.zeros((2, batch_size, 64), dtype=np.float32)
|
||||
c = np.zeros((2, batch_size, 64), dtype=np.float32)
|
||||
return h, c
|
||||
|
||||
def __call__(self, x, state, sr: int):
|
||||
if len(x.shape) == 1:
|
||||
x = np.expand_dims(x, 0)
|
||||
if len(x.shape) > 2:
|
||||
raise ValueError(
|
||||
f"Too many dimensions for input audio chunk {len(x.shape)}"
|
||||
)
|
||||
if sr / x.shape[1] > 31.25:
|
||||
raise ValueError("Input audio chunk is too short")
|
||||
|
||||
h, c = state
|
||||
|
||||
ort_inputs = {
|
||||
"input": x,
|
||||
"h": h,
|
||||
"c": c,
|
||||
"sr": np.array(sr, dtype="int64"),
|
||||
}
|
||||
|
||||
out, h, c = self.session.run(None, ort_inputs)
|
||||
state = (h, c)
|
||||
|
||||
return out, state
|
||||
@@ -2,3 +2,4 @@ av==10.*
|
||||
ctranslate2>=3.10,<4
|
||||
huggingface_hub>=0.13
|
||||
tokenizers==0.13.*
|
||||
onnxruntime==1.14.* ; python_version < "3.11"
|
||||
|
||||
1
setup.py
1
setup.py
@@ -56,4 +56,5 @@ setup(
|
||||
],
|
||||
},
|
||||
packages=find_packages(),
|
||||
include_package_data=True,
|
||||
)
|
||||
|
||||
@@ -27,6 +27,27 @@ def test_transcribe(jfk_path):
|
||||
assert segment.end == segment.words[-1].end
|
||||
|
||||
|
||||
def test_vad(jfk_path):
|
||||
model = WhisperModel("tiny")
|
||||
segments, _ = model.transcribe(
|
||||
jfk_path,
|
||||
vad_filter=True,
|
||||
vad_parameters=dict(min_silence_duration_ms=500),
|
||||
)
|
||||
segments = list(segments)
|
||||
|
||||
assert len(segments) == 1
|
||||
segment = segments[0]
|
||||
|
||||
assert segment.text == (
|
||||
" And so my fellow Americans ask not what your country can do for you, "
|
||||
"ask what you can do for your country."
|
||||
)
|
||||
|
||||
assert 0 < segment.start < 1
|
||||
assert 10 < segment.end < 11
|
||||
|
||||
|
||||
def test_stereo_diarization(data_dir):
|
||||
model = WhisperModel("tiny")
|
||||
|
||||
|
||||
Reference in New Issue
Block a user