Merge remote-tracking branch 'upstream/master' into prompt

This commit is contained in:
2024-07-10 10:16:35 +08:00
19 changed files with 2255 additions and 84 deletions

View File

@@ -75,28 +75,35 @@ Unlike openai-whisper, FFmpeg does **not** need to be installed on the system. T
GPU execution requires the following NVIDIA libraries to be installed:
* [cuBLAS for CUDA 11](https://developer.nvidia.com/cublas)
* [cuDNN 8 for CUDA 11](https://developer.nvidia.com/cudnn)
* [cuBLAS for CUDA 12](https://developer.nvidia.com/cublas)
* [cuDNN 8 for CUDA 12](https://developer.nvidia.com/cudnn)
There are multiple ways to install these libraries. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.
**Note**: Latest versions of `ctranslate2` support CUDA 12 only. For CUDA 11, the current workaround is downgrading to the `3.24.0` version of `ctranslate2` (This can be done with `pip install --force-reinstall ctranslate2==3.24.0` or specifying the version in a `requirements.txt`).
There are multiple ways to install the NVIDIA libraries mentioned above. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.
<details>
<summary>Other installation methods (click to expand)</summary>
**Note:** For all these methods below, keep in mind the above note regarding CUDA versions. Depending on your setup, you may need to install the _CUDA 11_ versions of libraries that correspond to the CUDA 12 libraries listed in the instructions below.
#### Use Docker
The libraries are installed in this official NVIDIA Docker image: `nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04`.
The libraries (cuBLAS, cuDNN) are installed in these official NVIDIA CUDA Docker images: `nvidia/cuda:12.0.0-runtime-ubuntu20.04` or `nvidia/cuda:12.0.0-runtime-ubuntu22.04`.
#### Install with `pip` (Linux only)
On Linux these libraries can be installed with `pip`. Note that `LD_LIBRARY_PATH` must be set before launching Python.
```bash
pip install nvidia-cublas-cu11 nvidia-cudnn-cu11
pip install nvidia-cublas-cu12 nvidia-cudnn-cu12
export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
```
**Note**: Version 9+ of `nvidia-cudnn-cu12` appears to cause issues due its reliance on cuDNN 9 (Faster-Whisper does not currently support cuDNN 9). Ensure your version of the Python package is for cuDNN 8.
#### Download the libraries from Purfview's repository (Windows & Linux)
Purfview's [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) provides the required NVIDIA libraries for Windows & Linux in a [single archive](https://github.com/Purfview/whisper-standalone-win/releases/tag/libs). Decompress the archive and place the libraries in a directory included in the `PATH`.
@@ -227,6 +234,7 @@ See more model and transcription options in the [`WhisperModel`](https://github.
Here is a non exhaustive list of open-source projects using faster-whisper. Feel free to add your project to the list!
* [faster-whisper-server](https://github.com/fedirz/faster-whisper-server) is an OpenAI compatible server using `faster-whisper`. It's easily deployable with Docker, works with OpenAI SDKs/CLI, supports streaming, and live transcription.
* [WhisperX](https://github.com/m-bain/whisperX) is an award-winning Python library that offers speaker diarization and accurate word-level timestamps using wav2vec2 alignment
* [whisper-ctranslate2](https://github.com/Softcatala/whisper-ctranslate2) is a command line client based on faster-whisper and compatible with the original client from openai/whisper.
* [whisper-diarize](https://github.com/MahmoudAshraf97/whisper-diarization) is a speaker diarization tool that is based on faster-whisper and NVIDIA NeMo.

BIN
benchmark/benchmark.m4a Normal file

Binary file not shown.

View File

@@ -0,0 +1,94 @@
import argparse
import time
from typing import Callable
import py3nvml.py3nvml as nvml
from memory_profiler import memory_usage
from utils import MyThread, get_logger, inference
logger = get_logger("faster-whisper")
parser = argparse.ArgumentParser(description="Memory benchmark")
parser.add_argument(
"--gpu_memory", action="store_true", help="Measure GPU memory usage"
)
parser.add_argument("--device-index", type=int, default=0, help="GPU device index")
parser.add_argument(
"--interval",
type=float,
default=0.5,
help="Interval at which measurements are collected",
)
args = parser.parse_args()
device_idx = args.device_index
interval = args.interval
def measure_memory(func: Callable[[], None]):
if args.gpu_memory:
logger.info(
"Measuring maximum GPU memory usage on GPU device."
" Make sure to not have additional processes running on the same GPU."
)
# init nvml
nvml.nvmlInit()
handle = nvml.nvmlDeviceGetHandleByIndex(device_idx)
gpu_name = nvml.nvmlDeviceGetName(handle)
gpu_memory_limit = nvml.nvmlDeviceGetMemoryInfo(handle).total >> 20
gpu_power_limit = nvml.nvmlDeviceGetPowerManagementLimit(handle) / 1000.0
info = {"gpu_memory_usage": [], "gpu_power_usage": []}
def _get_gpu_info():
while True:
info["gpu_memory_usage"].append(
nvml.nvmlDeviceGetMemoryInfo(handle).used >> 20
)
info["gpu_power_usage"].append(
nvml.nvmlDeviceGetPowerUsage(handle) / 1000
)
time.sleep(interval)
if stop:
break
return info
stop = False
thread = MyThread(_get_gpu_info, params=())
thread.start()
func()
stop = True
thread.join()
result = thread.get_result()
# shutdown nvml
nvml.nvmlShutdown()
max_memory_usage = max(result["gpu_memory_usage"])
max_power_usage = max(result["gpu_power_usage"])
print("GPU name: %s" % gpu_name)
print("GPU device index: %s" % device_idx)
print(
"Maximum GPU memory usage: %dMiB / %dMiB (%.2f%%)"
% (
max_memory_usage,
gpu_memory_limit,
(max_memory_usage / gpu_memory_limit) * 100,
)
)
print(
"Maximum GPU power usage: %dW / %dW (%.2f%%)"
% (
max_power_usage,
gpu_power_limit,
(max_power_usage / gpu_power_limit) * 100,
)
)
else:
logger.info("Measuring maximum increase of memory usage.")
max_usage = memory_usage(func, max_usage=True, interval=interval)
print("Maximum increase of RAM memory usage: %d MiB" % max_usage)
if __name__ == "__main__":
measure_memory(inference)

1742
benchmark/normalizer.json Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,6 @@
transformers
jiwer
evaluate
datasets
memory_profiler
py3nvml

View File

@@ -0,0 +1,31 @@
import argparse
import timeit
from typing import Callable
from utils import inference
parser = argparse.ArgumentParser(description="Speed benchmark")
parser.add_argument(
"--repeat",
type=int,
default=3,
help="Times an experiment will be run.",
)
args = parser.parse_args()
def measure_speed(func: Callable[[], None]):
# as written in https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat,
# min should be taken rather than the average
runtimes = timeit.repeat(
func,
repeat=args.repeat,
number=10,
)
print(runtimes)
print("Min execution time: %.3fs" % (min(runtimes) / 10.0))
if __name__ == "__main__":
measure_speed(inference)

39
benchmark/utils.py Normal file
View File

@@ -0,0 +1,39 @@
import logging
from threading import Thread
from typing import Optional
from faster_whisper import WhisperModel
model_path = "large-v3"
model = WhisperModel(model_path, device="cuda")
def inference():
segments, info = model.transcribe("benchmark.m4a", language="fr")
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
def get_logger(name: Optional[str] = None) -> logging.Logger:
formatter = logging.Formatter("%(levelname)s: %(message)s")
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
class MyThread(Thread):
def __init__(self, func, params):
super(MyThread, self).__init__()
self.func = func
self.params = params
self.result = None
def run(self):
self.result = self.func(*self.params)
def get_result(self):
return self.result

View File

@@ -0,0 +1,61 @@
import argparse
import json
from datasets import load_dataset
from evaluate import load
from tqdm import tqdm
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer
from faster_whisper import WhisperModel
parser = argparse.ArgumentParser(description="WER benchmark")
parser.add_argument(
"--audio_numb",
type=int,
default=None,
help="Specify the number of validation audio files in the dataset."
" Set to None to retrieve all audio files.",
)
args = parser.parse_args()
model_path = "large-v3"
model = WhisperModel(model_path, device="cuda")
# load the dataset with streaming mode
dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
# define the evaluation metric
wer_metric = load("wer")
normalizer = EnglishTextNormalizer(json.load(open("normalizer.json")))
def inference(batch):
batch["transcription"] = []
for sample in batch["audio"]:
segments, info = model.transcribe(sample["array"], language="en")
batch["transcription"].append("".join([segment.text for segment in segments]))
batch["reference"] = batch["text"]
return batch
dataset = dataset.map(function=inference, batched=True, batch_size=16)
all_transcriptions = []
all_references = []
# iterate over the dataset and run inference
for i, result in tqdm(enumerate(dataset), desc="Evaluating..."):
all_transcriptions.append(result["transcription"])
all_references.append(result["reference"])
if args.audio_numb and i == (args.audio_numb - 1):
break
# normalize predictions and references
all_transcriptions = [normalizer(transcription) for transcription in all_transcriptions]
all_references = [normalizer(reference) for reference in all_references]
# compute the WER metric
wer = 100 * wer_metric.compute(
predictions=all_transcriptions, references=all_references
)
print("WER: %.3f" % wer)

6
docker/Dockerfile Normal file
View File

@@ -0,0 +1,6 @@
FROM nvidia/cuda:12.2.2-cudnn8-runtime-ubuntu22.04
WORKDIR /root
RUN apt-get update -y && apt-get install -y python3-pip
COPY infer.py jfk.flac ./
RUN pip3 install faster-whisper
CMD ["python3", "infer.py"]

7
docker/infer.py Normal file
View File

@@ -0,0 +1,7 @@
from faster_whisper import WhisperModel
jfk_path = "jfk.flac"
model = WhisperModel("tiny", device="cuda")
segments, info = model.transcribe(jfk_path, word_timestamps=True)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

BIN
docker/jfk.flac Normal file

Binary file not shown.

View File

@@ -105,6 +105,42 @@ class Tokenizer:
[s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs]
)
@cached_property
def non_speech_tokens(self) -> Tuple[int]:
"""
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
- ♪♪♪
- ( SPEAKING FOREIGN LANGUAGE )
- [DAVID] Hey there,
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
"""
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
symbols += (
"<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
)
# symbols that may be a single token or multiple tokens depending on the tokenizer.
# In case they're multiple tokens, suppress the first token, which is safe because:
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
miscellaneous = set("♩♪♫♬♭♮♯")
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
result = {self.encode(" -")[0], self.encode(" '")[0]}
for symbol in symbols + list(miscellaneous):
for tokens in [
self.encode(symbol),
self.encode(" " + symbol),
]:
if len(tokens) == 1 or symbol in miscellaneous:
result.add(tokens[0])
return tuple(sorted(result))
def split_to_word_tokens(
self, tokens: List[int]
) -> Tuple[List[str], List[List[int]]]:

View File

@@ -69,6 +69,7 @@ class TranscriptionOptions(NamedTuple):
max_new_tokens: Optional[int]
clip_timestamps: Union[str, List[float]]
hallucination_silence_threshold: Optional[float]
hotwords: Optional[str]
class TranscriptionInfo(NamedTuple):
@@ -92,12 +93,15 @@ class WhisperModel:
num_workers: int = 1,
download_root: Optional[str] = None,
local_files_only: bool = False,
files: dict = None,
**model_kwargs,
):
"""Initializes the Whisper model.
Args:
model_size_or_path: Size of the model to use (tiny, tiny.en, base, base.en,
small, small.en, medium, medium.en, large-v1, large-v2, large-v3, or large), a path to a
small, small.en, distil-small.en, medium, medium.en, distil-medium.en, large-v1,
large-v2, large-v3, large, distil-large-v2 or distil-large-v3), a path to a
converted model directory, or a CTranslate2-converted Whisper model ID from the HF Hub.
When a size or a model ID is configured, the converted model is downloaded
from the Hugging Face Hub.
@@ -118,10 +122,18 @@ class WhisperModel:
are saved in the standard Hugging Face cache directory.
local_files_only: If True, avoid downloading the file and return the path to the
local cached file if it exists.
files: Load model files from the memory. This argument is a dictionary mapping file names
to file contents as file-like or bytes objects. If this is set, model_path acts as an
identifier for this model.
"""
self.logger = get_logger()
if os.path.isdir(model_size_or_path):
tokenizer_bytes, preprocessor_bytes = None, None
if files:
model_path = model_size_or_path
tokenizer_bytes = files.pop("tokenizer.json", None)
preprocessor_bytes = files.pop("preprocessor_config.json", None)
elif os.path.isdir(model_size_or_path):
model_path = model_size_or_path
else:
model_path = download_model(
@@ -137,17 +149,20 @@ class WhisperModel:
compute_type=compute_type,
intra_threads=cpu_threads,
inter_threads=num_workers,
files=files,
**model_kwargs,
)
tokenizer_file = os.path.join(model_path, "tokenizer.json")
if os.path.isfile(tokenizer_file):
if tokenizer_bytes:
self.hf_tokenizer = tokenizers.Tokenizer.from_buffer(tokenizer_bytes)
elif os.path.isfile(tokenizer_file):
self.hf_tokenizer = tokenizers.Tokenizer.from_file(tokenizer_file)
else:
self.hf_tokenizer = tokenizers.Tokenizer.from_pretrained(
"openai/whisper-tiny" + ("" if self.model.is_multilingual else ".en")
)
self.feat_kwargs = self._get_feature_kwargs(model_path)
self.feat_kwargs = self._get_feature_kwargs(model_path, preprocessor_bytes)
self.feature_extractor = FeatureExtractor(**self.feat_kwargs)
self.num_samples_per_token = self.feature_extractor.hop_length * 2
self.frames_per_second = (
@@ -165,19 +180,21 @@ class WhisperModel:
"""The languages supported by the model."""
return list(_LANGUAGE_CODES) if self.model.is_multilingual else ["en"]
def _get_feature_kwargs(self, model_path) -> dict:
preprocessor_config_file = os.path.join(model_path, "preprocessor_config.json")
def _get_feature_kwargs(self, model_path, preprocessor_bytes=None) -> dict:
config = {}
if os.path.isfile(preprocessor_config_file):
try:
with open(preprocessor_config_file, "r", encoding="utf-8") as json_file:
config = json.load(json_file)
valid_keys = signature(FeatureExtractor.__init__).parameters.keys()
config = {k: v for k, v in config.items() if k in valid_keys}
except json.JSONDecodeError as e:
self.logger.warning(
"Could not load preprocessor_config.json: %s", str(e)
)
try:
config_path = os.path.join(model_path, "preprocessor_config.json")
if preprocessor_bytes:
config = json.loads(preprocessor_bytes)
elif os.path.isfile(config_path):
with open(config_path, "r", encoding="utf-8") as file:
config = json.load(file)
else:
return config
valid_keys = signature(FeatureExtractor.__init__).parameters.keys()
return {k: v for k, v in config.items() if k in valid_keys}
except json.JSONDecodeError as e:
self.logger.warning("Could not load preprocessor config: %s", e)
return config
@@ -220,6 +237,7 @@ class WhisperModel:
chunk_length: Optional[int] = None,
clip_timestamps: Union[str, List[float]] = "0",
hallucination_silence_threshold: Optional[float] = None,
hotwords: Optional[str] = None,
language_detection_threshold: Optional[float] = None,
language_detection_segments: int = 1,
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
@@ -259,7 +277,7 @@ class WhisperModel:
prefix: Optional text to provide as a prefix for the first window.
suppress_blank: Suppress blank outputs at the beginning of the sampling.
suppress_tokens: List of token IDs to suppress. -1 will suppress a default set
of symbols as defined in the model config.json file.
of symbols as defined in `tokenizer.non_speech_tokens()`
without_timestamps: Only sample text tokens.
max_initial_timestamp: The initial timestamp cannot be later than this.
word_timestamps: Extract word-level timestamps using the cross-attention pattern
@@ -277,17 +295,18 @@ class WhisperModel:
the maximum will be set by the default max_length.
chunk_length: The length of audio segments. If it is not None, it will overwrite the
default chunk_length of the FeatureExtractor.
clip_timestamps: Union[str, List[float]]
clip_timestamps:
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to
process. The last end timestamp defaults to the end of the file.
vad_filter will be ignored if clip_timestamps is used.
hallucination_silence_threshold: Optional[float]
hallucination_silence_threshold:
When word_timestamps is True, skip silent periods longer than this threshold
(in seconds) when a possible hallucination is detected
hotwords:
Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.
language_detection_threshold: If the maximum probability of the language tokens is higher
than this value, the language is detected.
language_detection_segments: Number of segments to consider for the language detection.
Returns:
A tuple with:
@@ -351,16 +370,27 @@ class WhisperModel:
or language_detection_segments < 1
):
language_detection_segments = 1
seek = 0
detected_language_info = {}
start_timestamp = (
float(clip_timestamps.split(",")[0])
if isinstance(clip_timestamps, str)
else clip_timestamps[0]
)
content_frames = (
features.shape[-1] - self.feature_extractor.nb_max_frames
)
while (
seek <= content_frames
and seek
< self.feature_extractor.nb_max_frames * language_detection_segments
):
seek = (
int(start_timestamp * self.frames_per_second)
if start_timestamp * self.frames_per_second < content_frames
else 0
)
end_frames = min(
seek
+ self.feature_extractor.nb_max_frames
* language_detection_segments,
content_frames,
)
detected_language_info = {}
while seek <= end_frames:
segment = features[
:, seek : seek + self.feature_extractor.nb_max_frames
]
@@ -432,7 +462,11 @@ class WhisperModel:
initial_prompt=initial_prompt,
prefix=prefix,
suppress_blank=suppress_blank,
suppress_tokens=get_suppressed_tokens(tokenizer, suppress_tokens),
suppress_tokens=(
get_suppressed_tokens(tokenizer, suppress_tokens)
if suppress_tokens
else suppress_tokens
),
without_timestamps=without_timestamps,
max_initial_timestamp=max_initial_timestamp,
word_timestamps=word_timestamps,
@@ -441,6 +475,7 @@ class WhisperModel:
max_new_tokens=max_new_tokens,
clip_timestamps=clip_timestamps,
hallucination_silence_threshold=hallucination_silence_threshold,
hotwords=hotwords,
)
segments = self.generate_segments(features, tokenizer, options, encoder_output)
@@ -457,7 +492,6 @@ class WhisperModel:
vad_options=vad_parameters,
all_language_probs=all_language_probs,
)
return segments, info
def generate_segments(
@@ -471,14 +505,16 @@ class WhisperModel:
content_duration = float(content_frames * self.feature_extractor.time_per_frame)
if isinstance(options.clip_timestamps, str):
TranscriptionOptions.clip_timestamps = [
float(ts)
for ts in (
options.clip_timestamps.split(",")
if options.clip_timestamps
else []
)
]
options = options._replace(
clip_timestamps=[
float(ts)
for ts in (
options.clip_timestamps.split(",")
if options.clip_timestamps
else []
)
]
)
seek_points: List[int] = [
round(ts * self.frames_per_second) for ts in options.clip_timestamps
]
@@ -548,6 +584,7 @@ class WhisperModel:
previous_tokens,
without_timestamps=options.without_timestamps,
prefix=options.prefix if seek == 0 else None,
hotwords=options.hotwords,
)
if seek > 0 or encoder_output is None:
@@ -948,12 +985,19 @@ class WhisperModel:
previous_tokens: List[int],
without_timestamps: bool = False,
prefix: Optional[str] = None,
hotwords: Optional[str] = None,
) -> List[int]:
prompt = []
if previous_tokens:
if previous_tokens or (hotwords and not prefix):
prompt.append(tokenizer.sot_prev)
prompt.extend(previous_tokens[-(self.max_length // 2 - 1) :])
if hotwords and not prefix:
hotwords_tokens = tokenizer.encode(" " + hotwords.strip())
if len(hotwords_tokens) >= self.max_length // 2:
hotwords_tokens = hotwords_tokens[: self.max_length // 2 - 1]
prompt.extend(hotwords_tokens)
if previous_tokens:
prompt.extend(previous_tokens[-(self.max_length // 2 - 1) :])
prompt.extend(tokenizer.sot_sequence)
@@ -1195,15 +1239,16 @@ def get_compression_ratio(text: str) -> float:
def get_suppressed_tokens(
tokenizer: Tokenizer,
suppress_tokens: Optional[List[int]],
suppress_tokens: Tuple[int],
) -> Optional[List[int]]:
if not suppress_tokens or -1 in suppress_tokens:
return suppress_tokens
if -1 in suppress_tokens:
suppress_tokens = [t for t in suppress_tokens if t >= 0]
suppress_tokens.extend(tokenizer.non_speech_tokens)
elif suppress_tokens is None or len(suppress_tokens) == 0:
suppress_tokens = [] # interpret empty string as an empty list
else:
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
suppress_tokens = list(suppress_tokens)
# Ensure the following special tokens are suppressed when the user does
# not use the default set (-1).
suppress_tokens.extend(
[
tokenizer.transcribe,
@@ -1214,7 +1259,7 @@ def get_suppressed_tokens(
]
)
return sorted(set(suppress_tokens))
return tuple(sorted(set(suppress_tokens)))
def merge_punctuations(alignment: List[dict], prepended: str, appended: str) -> None:

View File

@@ -54,8 +54,9 @@ def download_model(
Args:
size_or_id: Size of the model to download from https://huggingface.co/Systran
(tiny, tiny.en, base, base.en, small, small.en medium, medium.en, large-v1, large-v2,
large-v3, large), or a CTranslate2-converted model ID from the Hugging Face Hub
(tiny, tiny.en, base, base.en, small, small.en, distil-small.en, medium, medium.en,
distil-medium.en, large-v1, large-v2, large-v3, large, distil-large-v2,
distil-large-v3), or a CTranslate2-converted model ID from the Hugging Face Hub
(e.g. Systran/faster-whisper-large-v3).
output_dir: Directory where the model should be saved. If not set, the model is saved in
the cache directory.

View File

@@ -1,7 +1,6 @@
import bisect
import functools
import os
import warnings
from typing import List, NamedTuple, Optional
@@ -25,9 +24,6 @@ class VadOptions(NamedTuple):
split aggressively just before max_speech_duration_s.
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
before separating it
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
Values other than these may affect model performance!!
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
"""
@@ -35,7 +31,6 @@ class VadOptions(NamedTuple):
min_speech_duration_ms: int = 250
max_speech_duration_s: float = float("inf")
min_silence_duration_ms: int = 2000
window_size_samples: int = 1024
speech_pad_ms: int = 400
@@ -61,15 +56,8 @@ def get_speech_timestamps(
min_speech_duration_ms = vad_options.min_speech_duration_ms
max_speech_duration_s = vad_options.max_speech_duration_s
min_silence_duration_ms = vad_options.min_silence_duration_ms
window_size_samples = vad_options.window_size_samples
window_size_samples = 512
speech_pad_ms = vad_options.speech_pad_ms
if window_size_samples not in [512, 1024, 1536]:
warnings.warn(
"Unusual window_size_samples! Supported window_size_samples:\n"
" - [512, 1024, 1536] for 16000 sampling_rate"
)
sampling_rate = 16000
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
@@ -84,14 +72,14 @@ def get_speech_timestamps(
audio_length_samples = len(audio)
model = get_vad_model()
state = model.get_initial_state(batch_size=1)
state, context = model.get_initial_states(batch_size=1)
speech_probs = []
for current_start_sample in range(0, audio_length_samples, window_size_samples):
chunk = audio[current_start_sample : current_start_sample + window_size_samples]
if len(chunk) < window_size_samples:
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
speech_prob, state = model(chunk, state, sampling_rate)
speech_prob, state, context = model(chunk, state, context, sampling_rate)
speech_probs.append(speech_prob)
triggered = False
@@ -261,12 +249,12 @@ class SileroVADModel:
sess_options=opts,
)
def get_initial_state(self, batch_size: int):
h = np.zeros((2, batch_size, 64), dtype=np.float32)
c = np.zeros((2, batch_size, 64), dtype=np.float32)
return h, c
def get_initial_states(self, batch_size: int):
state = np.zeros((2, batch_size, 128), dtype=np.float32)
context = np.zeros((batch_size, 64), dtype=np.float32)
return state, context
def __call__(self, x, state, sr: int):
def __call__(self, x, state, context, sr: int):
if len(x.shape) == 1:
x = np.expand_dims(x, 0)
if len(x.shape) > 2:
@@ -276,16 +264,15 @@ class SileroVADModel:
if sr / x.shape[1] > 31.25:
raise ValueError("Input audio chunk is too short")
h, c = state
x = np.concatenate([context, x], axis=1)
ort_inputs = {
"input": x,
"h": h,
"c": c,
"state": state,
"sr": np.array(sr, dtype="int64"),
}
out, h, c = self.session.run(None, ort_inputs)
state = (h, c)
out, state = self.session.run(None, ort_inputs)
context = x[..., -64:]
return out, state
return out, state, context

View File

@@ -1,3 +1,3 @@
"""Version information."""
__version__ = "1.0.1"
__version__ = "1.0.3"

View File

@@ -1,5 +1,5 @@
av==11.*
av>=11.0,<13
ctranslate2>=4.0,<5
huggingface_hub>=0.13
tokenizers>=0.13,<0.16
tokenizers>=0.13,<1
onnxruntime>=1.14,<2

View File

@@ -1,6 +1,8 @@
import os
from faster_whisper import WhisperModel, decode_audio
from faster_whisper.tokenizer import Tokenizer
from faster_whisper.transcribe import get_suppressed_tokens
def test_supported_languages():
@@ -97,3 +99,109 @@ def test_stereo_diarization(data_dir):
segments, _ = model.transcribe(right)
transcription = "".join(segment.text for segment in segments).strip()
assert transcription == "The horizon seems extremely distant."
def test_suppressed_tokens_minus_1():
model = WhisperModel("tiny.en")
tokenizer = Tokenizer(model.hf_tokenizer, False)
tokens = get_suppressed_tokens(tokenizer, [-1])
assert tokens == (
1,
2,
7,
8,
9,
10,
14,
25,
26,
27,
28,
29,
31,
58,
59,
60,
61,
62,
63,
90,
91,
92,
93,
357,
366,
438,
532,
685,
705,
796,
930,
1058,
1220,
1267,
1279,
1303,
1343,
1377,
1391,
1635,
1782,
1875,
2162,
2361,
2488,
3467,
4008,
4211,
4600,
4808,
5299,
5855,
6329,
7203,
9609,
9959,
10563,
10786,
11420,
11709,
11907,
13163,
13697,
13700,
14808,
15306,
16410,
16791,
17992,
19203,
19510,
20724,
22305,
22935,
27007,
30109,
30420,
33409,
34949,
40283,
40493,
40549,
47282,
49146,
50257,
50357,
50358,
50359,
50360,
)
def test_suppressed_tokens_minus_value():
model = WhisperModel("tiny.en")
tokenizer = Tokenizer(model.hf_tokenizer, False)
tokens = get_suppressed_tokens(tokenizer, [13])
assert tokens == (13, 50257, 50357, 50358, 50359, 50360)