Merge branch 'master' into prompt

This commit is contained in:
2024-04-08 20:56:49 +08:00
7 changed files with 78 additions and 28 deletions

View File

@@ -7,7 +7,7 @@ Contributions are welcome! Here are some pointers to help you install the librar
We recommend installing the module in editable mode with the `dev` extra requirements:
```bash
git clone https://github.com/guillaumekln/faster-whisper.git
git clone https://github.com/SYSTRAN/faster-whisper.git
cd faster-whisper/
pip install -e .[dev]
```

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023 Guillaume Klein
Copyright (c) 2023 SYSTRAN
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -1,4 +1,4 @@
[![CI](https://github.com/guillaumekln/faster-whisper/workflows/CI/badge.svg)](https://github.com/guillaumekln/faster-whisper/actions?query=workflow%3ACI) [![PyPI version](https://badge.fury.io/py/faster-whisper.svg)](https://badge.fury.io/py/faster-whisper)
[![CI](https://github.com/SYSTRAN/faster-whisper/workflows/CI/badge.svg)](https://github.com/SYSTRAN/faster-whisper/actions?query=workflow%3ACI) [![PyPI version](https://badge.fury.io/py/faster-whisper.svg)](https://badge.fury.io/py/faster-whisper)
# Faster Whisper transcription with CTranslate2
@@ -14,7 +14,7 @@ For reference, here's the time and memory usage that are required to transcribe
* [openai/whisper](https://github.com/openai/whisper)@[6dea21fd](https://github.com/openai/whisper/commit/6dea21fd7f7253bfe450f1e2512a0fe47ee2d258)
* [whisper.cpp](https://github.com/ggerganov/whisper.cpp)@[3b010f9](https://github.com/ggerganov/whisper.cpp/commit/3b010f9bed9a6068609e9faf52383aea792b0362)
* [faster-whisper](https://github.com/guillaumekln/faster-whisper)@[cce6b53e](https://github.com/guillaumekln/faster-whisper/commit/cce6b53e4554f71172dad188c45f10fb100f6e3e)
* [faster-whisper](https://github.com/SYSTRAN/faster-whisper)@[cce6b53e](https://github.com/SYSTRAN/faster-whisper/commit/cce6b53e4554f71172dad188c45f10fb100f6e3e)
### Large-v2 model on GPU
@@ -117,13 +117,13 @@ pip install faster-whisper
### Install the master branch
```bash
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/refs/heads/master.tar.gz"
pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/refs/heads/master.tar.gz"
```
### Install a specific commit
```bash
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
```
</details>
@@ -159,18 +159,25 @@ for segment in segments:
segments, _ = model.transcribe("audio.mp3")
segments = list(segments) # The transcription will actually run here.
```
### Faster-distil-whisper
For usage of `faster-distil-whisper`, please refer to: https://github.com/guillaumekln/faster-whisper/issues/533
### Faster Distil-Whisper
The Distil-Whisper checkpoints are compatible with the Faster-Whisper package. In particular, the latest [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)
checkpoint is intrinsically designed to work with the Faster-Whisper transcription algorithm. The following code snippet
demonstrates how to run inference with distil-large-v3 on a specified audio file:
```python
model_size = "distil-large-v2"
# model_size = "distil-medium.en"
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5,
language="en", max_new_tokens=128, condition_on_previous_text=False)
from faster_whisper import WhisperModel
model_size = "distil-large-v3"
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en", condition_on_previous_text=False)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```
NOTE: Empirically, `condition_on_previous_text=True` will degrade the performance of `faster-distil-whisper` for long audio. Degradation on the first chunk was observed with `initial_prompt` too.
For more information about the distil-large-v3 model, refer to the original [model card](https://huggingface.co/distil-whisper/distil-large-v3).
### Word-level timestamps
@@ -190,7 +197,7 @@ The library integrates the [Silero VAD](https://github.com/snakers4/silero-vad)
segments, _ = model.transcribe("audio.mp3", vad_filter=True)
```
The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the [source code](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:
The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the [source code](https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:
```python
segments, _ = model.transcribe(
@@ -213,7 +220,7 @@ logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
### Going further
See more model and transcription options in the [`WhisperModel`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.
See more model and transcription options in the [`WhisperModel`](https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.
## Community integrations

View File

View File

@@ -220,6 +220,8 @@ class WhisperModel:
chunk_length: Optional[int] = None,
clip_timestamps: Union[str, List[float]] = "0",
hallucination_silence_threshold: Optional[float] = None,
language_detection_threshold: Optional[float] = None,
language_detection_segments: int = 1,
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
"""Transcribes an input file.
@@ -278,9 +280,13 @@ class WhisperModel:
clip_timestamps: Union[str, List[float]]
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to
process. The last end timestamp defaults to the end of the file.
vad_filter will be ignored if clip_timestamps is used.
hallucination_silence_threshold: Optional[float]
When word_timestamps is True, skip silent periods longer than this threshold
(in seconds) when a possible hallucination is detected
language_detection_threshold: If the maximum probability of the language tokens is higher
than this value, the language is detected.
language_detection_segments: Number of segments to consider for the language detection.
Returns:
A tuple with:
@@ -300,7 +306,7 @@ class WhisperModel:
"Processing audio with duration %s", format_timestamp(duration)
)
if vad_filter:
if vad_filter and clip_timestamps == "0":
if vad_parameters is None:
vad_parameters = VadOptions()
elif isinstance(vad_parameters, dict):
@@ -340,15 +346,51 @@ class WhisperModel:
language = "en"
language_probability = 1
else:
segment = features[:, : self.feature_extractor.nb_max_frames]
encoder_output = self.encode(segment)
# results is a list of tuple[str, float] with language names and
# probabilities.
results = self.model.detect_language(encoder_output)[0]
# Parse language names to strip out markers
all_language_probs = [(token[2:-2], prob) for (token, prob) in results]
# Get top language token and probability
language, language_probability = all_language_probs[0]
if (
language_detection_segments is None
or language_detection_segments < 1
):
language_detection_segments = 1
seek = 0
detected_language_info = {}
content_frames = (
features.shape[-1] - self.feature_extractor.nb_max_frames
)
while (
seek <= content_frames
and seek
< self.feature_extractor.nb_max_frames * language_detection_segments
):
segment = features[
:, seek : seek + self.feature_extractor.nb_max_frames
]
encoder_output = self.encode(segment)
# results is a list of tuple[str, float] with language names and
# probabilities.
results = self.model.detect_language(encoder_output)[0]
# Parse language names to strip out markers
all_language_probs = [
(token[2:-2], prob) for (token, prob) in results
]
# Get top language token and probability
language, language_probability = all_language_probs[0]
if (
language_detection_threshold is None
or language_probability > language_detection_threshold
):
break
detected_language_info.setdefault(language, []).append(
language_probability
)
seek += segment.shape[-1]
else:
# If no language detected for all segments, the majority vote of the highest
# projected languages for all segments is used to determine the language.
language = max(
detected_language_info,
key=lambda lang: len(detected_language_info[lang]),
)
language_probability = max(detected_language_info[language])
self.logger.info(
"Detected language '%s' with probability %.2f",

View File

@@ -25,6 +25,7 @@ _MODELS = {
"distil-large-v2": "Systran/faster-distil-whisper-large-v2",
"distil-medium.en": "Systran/faster-distil-whisper-medium.en",
"distil-small.en": "Systran/faster-distil-whisper-small.en",
"distil-large-v3": "Systran/faster-distil-whisper-large-v3",
}
@@ -52,7 +53,7 @@ def download_model(
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
Args:
size_or_id: Size of the model to download from https://huggingface.co/guillaumekln
size_or_id: Size of the model to download from https://huggingface.co/Systran
(tiny, tiny.en, base, base.en, small, small.en medium, medium.en, large-v1, large-v2,
large-v3, large), or a CTranslate2-converted model ID from the Hugging Face Hub
(e.g. Systran/faster-whisper-large-v3).

View File

@@ -37,7 +37,7 @@ setup(
long_description=get_long_description(),
long_description_content_type="text/markdown",
author="Guillaume Klein",
url="https://github.com/guillaumekln/faster-whisper",
url="https://github.com/SYSTRAN/faster-whisper",
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",