Add benchmarking logic for memory, wer and speed (#773)

This commit is contained in:
trungkienbkhn
2024-05-04 15:12:43 +07:00
committed by GitHub
parent 847fec4492
commit 6eec07739e
7 changed files with 1973 additions and 0 deletions

BIN
benchmark/benchmark.m4a Normal file

Binary file not shown.

View File

@@ -0,0 +1,94 @@
import argparse
import time
from typing import Callable
import py3nvml.py3nvml as nvml
from memory_profiler import memory_usage
from utils import MyThread, get_logger, inference
logger = get_logger("faster-whisper")
parser = argparse.ArgumentParser(description="Memory benchmark")
parser.add_argument(
"--gpu_memory", action="store_true", help="Measure GPU memory usage"
)
parser.add_argument("--device-index", type=int, default=0, help="GPU device index")
parser.add_argument(
"--interval",
type=float,
default=0.5,
help="Interval at which measurements are collected",
)
args = parser.parse_args()
device_idx = args.device_index
interval = args.interval
def measure_memory(func: Callable[[], None]):
if args.gpu_memory:
logger.info(
"Measuring maximum GPU memory usage on GPU device."
" Make sure to not have additional processes running on the same GPU."
)
# init nvml
nvml.nvmlInit()
handle = nvml.nvmlDeviceGetHandleByIndex(device_idx)
gpu_name = nvml.nvmlDeviceGetName(handle)
gpu_memory_limit = nvml.nvmlDeviceGetMemoryInfo(handle).total >> 20
gpu_power_limit = nvml.nvmlDeviceGetPowerManagementLimit(handle) / 1000.0
info = {"gpu_memory_usage": [], "gpu_power_usage": []}
def _get_gpu_info():
while True:
info["gpu_memory_usage"].append(
nvml.nvmlDeviceGetMemoryInfo(handle).used >> 20
)
info["gpu_power_usage"].append(
nvml.nvmlDeviceGetPowerUsage(handle) / 1000
)
time.sleep(interval)
if stop:
break
return info
stop = False
thread = MyThread(_get_gpu_info, params=())
thread.start()
func()
stop = True
thread.join()
result = thread.get_result()
# shutdown nvml
nvml.nvmlShutdown()
max_memory_usage = max(result["gpu_memory_usage"])
max_power_usage = max(result["gpu_power_usage"])
print("GPU name: %s" % gpu_name)
print("GPU device index: %s" % device_idx)
print(
"Maximum GPU memory usage: %dMiB / %dMiB (%.2f%%)"
% (
max_memory_usage,
gpu_memory_limit,
(max_memory_usage / gpu_memory_limit) * 100,
)
)
print(
"Maximum GPU power usage: %dW / %dW (%.2f%%)"
% (
max_power_usage,
gpu_power_limit,
(max_power_usage / gpu_power_limit) * 100,
)
)
else:
logger.info("Measuring maximum increase of memory usage.")
max_usage = memory_usage(func, max_usage=True, interval=interval)
print("Maximum increase of RAM memory usage: %d MiB" % max_usage)
if __name__ == "__main__":
measure_memory(inference)

1742
benchmark/normalizer.json Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,6 @@
transformers
jiwer
evaluate
datasets
memory_profiler
py3nvml

View File

@@ -0,0 +1,31 @@
import argparse
import timeit
from typing import Callable
from utils import inference
parser = argparse.ArgumentParser(description="Speed benchmark")
parser.add_argument(
"--repeat",
type=int,
default=3,
help="Times an experiment will be run.",
)
args = parser.parse_args()
def measure_speed(func: Callable[[], None]):
# as written in https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat,
# min should be taken rather than the average
runtimes = timeit.repeat(
func,
repeat=args.repeat,
number=10,
)
print(runtimes)
print("Min execution time: %.3fs" % (min(runtimes) / 10.0))
if __name__ == "__main__":
measure_speed(inference)

39
benchmark/utils.py Normal file
View File

@@ -0,0 +1,39 @@
import logging
from threading import Thread
from typing import Optional
from faster_whisper import WhisperModel
model_path = "large-v3"
model = WhisperModel(model_path, device="cuda")
def inference():
segments, info = model.transcribe("benchmark.m4a", language="fr")
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
def get_logger(name: Optional[str] = None) -> logging.Logger:
formatter = logging.Formatter("%(levelname)s: %(message)s")
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
class MyThread(Thread):
def __init__(self, func, params):
super(MyThread, self).__init__()
self.func = func
self.params = params
self.result = None
def run(self):
self.result = self.func(*self.params)
def get_result(self):
return self.result

View File

@@ -0,0 +1,61 @@
import argparse
import json
from datasets import load_dataset
from evaluate import load
from tqdm import tqdm
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer
from faster_whisper import WhisperModel
parser = argparse.ArgumentParser(description="WER benchmark")
parser.add_argument(
"--audio_numb",
type=int,
default=None,
help="Specify the number of validation audio files in the dataset."
" Set to None to retrieve all audio files.",
)
args = parser.parse_args()
model_path = "large-v3"
model = WhisperModel(model_path, device="cuda")
# load the dataset with streaming mode
dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
# define the evaluation metric
wer_metric = load("wer")
normalizer = EnglishTextNormalizer(json.load(open("normalizer.json")))
def inference(batch):
batch["transcription"] = []
for sample in batch["audio"]:
segments, info = model.transcribe(sample["array"], language="en")
batch["transcription"].append("".join([segment.text for segment in segments]))
batch["reference"] = batch["text"]
return batch
dataset = dataset.map(function=inference, batched=True, batch_size=16)
all_transcriptions = []
all_references = []
# iterate over the dataset and run inference
for i, result in tqdm(enumerate(dataset), desc="Evaluating..."):
all_transcriptions.append(result["transcription"])
all_references.append(result["reference"])
if args.audio_numb and i == (args.audio_numb - 1):
break
# normalize predictions and references
all_transcriptions = [normalizer(transcription) for transcription in all_transcriptions]
all_references = [normalizer(reference) for reference in all_references]
# compute the WER metric
wer = 100 * wer_metric.compute(
predictions=all_transcriptions, references=all_references
)
print("WER: %.3f" % wer)