Merge remote-tracking branch 'upstream/master' into prompt

This commit is contained in:
2023-12-25 17:56:50 +08:00
10 changed files with 459 additions and 99 deletions

View File

@@ -36,6 +36,44 @@ For reference, here's the time and memory usage that are required to transcribe
*Executed with 8 threads on a Intel(R) Xeon(R) Gold 6226R.*
## Requirements
* Python 3.8 or greater
Unlike openai-whisper, FFmpeg does **not** need to be installed on the system. The audio is decoded with the Python library [PyAV](https://github.com/PyAV-Org/PyAV) which bundles the FFmpeg libraries in its package.
### GPU
GPU execution requires the following NVIDIA libraries to be installed:
* [cuBLAS for CUDA 11](https://developer.nvidia.com/cublas)
* [cuDNN 8 for CUDA 11](https://developer.nvidia.com/cudnn)
There are multiple ways to install these libraries. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.
<details>
<summary>Other installation methods (click to expand)</summary>
#### Use Docker
The libraries are installed in this official NVIDIA Docker image: `nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04`.
#### Install with `pip` (Linux only)
On Linux these libraries can be installed with `pip`. Note that `LD_LIBRARY_PATH` must be set before launching Python.
```bash
pip install nvidia-cublas-cu11 nvidia-cudnn-cu11
export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
```
#### Download the libraries from Purfview's repository (Windows & Linux)
Purfview's [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) provides the required NVIDIA libraries for Windows & Linux in a [single archive](https://github.com/Purfview/whisper-standalone-win/releases/tag/libs). Decompress the archive and place the libraries in a directory included in the `PATH`.
</details>
## Installation
The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/):
@@ -44,26 +82,29 @@ The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/
pip install faster-whisper
```
**Other installation methods:**
<details>
<summary>Other installation methods (click to expand)</summary>
### Install the master branch
```bash
# Install the master branch:
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/refs/heads/master.tar.gz"
```
# Install a specific commit:
### Install a specific commit
```bash
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
```
### GPU support
GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be installed on the system. Please refer to the [CTranslate2 documentation](https://opennmt.net/CTranslate2/installation.html).
</details>
## Usage
```python
from faster_whisper import WhisperModel
model_size = "large-v2"
model_size = "large-v3"
# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")
@@ -137,23 +178,24 @@ Here is a non exhaustive list of open-source projects using faster-whisper. Feel
* [whisper-ctranslate2](https://github.com/Softcatala/whisper-ctranslate2) is a command line client based on faster-whisper and compatible with the original client from openai/whisper.
* [whisper-diarize](https://github.com/MahmoudAshraf97/whisper-diarization) is a speaker diarization tool that is based on faster-whisper and NVIDIA NeMo.
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) contains the portable ready to run binaries of faster-whisper for Windows.
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) Standalone CLI executables of faster-whisper for Windows, Linux & macOS.
* [asr-sd-pipeline](https://github.com/hedrergudene/asr-sd-pipeline) provides a scalable, modular, end to end multi-speaker speech to text solution implemented using AzureML pipelines.
* [Open-Lyrics](https://github.com/zh-plus/Open-Lyrics) is a Python library that transcribes voice files using faster-whisper, and translates/polishes the resulting text into `.lrc` files in the desired language using OpenAI-GPT.
* [wscribe](https://github.com/geekodour/wscribe) is a flexible transcript generation tool supporting faster-whisper, it can export word level transcript and the exported transcript then can be edited with [wscribe-editor](https://github.com/geekodour/wscribe-editor)
## Model conversion
When loading a model from its size such as `WhisperModel("large-v2")`, the correspondig CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/guillaumekln).
When loading a model from its size such as `WhisperModel("large-v3")`, the correspondig CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/Systran).
We also provide a script to convert any Whisper models compatible with the Transformers library. They could be the original OpenAI models or user fine-tuned models.
For example the command below converts the [original "large-v2" Whisper model](https://huggingface.co/openai/whisper-large-v2) and saves the weights in FP16:
For example the command below converts the [original "large-v3" Whisper model](https://huggingface.co/openai/whisper-large-v3) and saves the weights in FP16:
```bash
pip install transformers[torch]>=4.23
ct2-transformers-converter --model openai/whisper-large-v2 --output_dir whisper-large-v2-ct2 \
--copy_files tokenizer.json --quantization float16
ct2-transformers-converter --model openai/whisper-large-v3 --output_dir whisper-large-v3-ct2
--copy_files tokenizer.json preprocessor_config.json --quantization float16
```
* The option `--model` accepts a model name on the Hub or a path to a model directory.
@@ -161,6 +203,18 @@ ct2-transformers-converter --model openai/whisper-large-v2 --output_dir whisper-
Models can also be converted from the code. See the [conversion API](https://opennmt.net/CTranslate2/python/ctranslate2.converters.TransformersConverter.html).
### Load a converted model
1. Directly load the model from a local directory:
```python
model = faster_whisper.WhisperModel("whisper-large-v3-ct2")
```
2. [Upload your model to the Hugging Face Hub](https://huggingface.co/docs/transformers/model_sharing#upload-with-the-web-interface) and load it from its name:
```python
model = faster_whisper.WhisperModel("username/whisper-large-v3-ct2")
```
## Comparing performance against other implementations
If you are comparing the performance against other Whisper implementations, you should make sure to run the comparison with similar settings. In particular:

View File

@@ -1,9 +1,10 @@
from faster_whisper.audio import decode_audio
from faster_whisper.transcribe import WhisperModel
from faster_whisper.utils import download_model, format_timestamp
from faster_whisper.utils import available_models, download_model, format_timestamp
from faster_whisper.version import __version__
__all__ = [
"available_models",
"decode_audio",
"WhisperModel",
"download_model",

View File

@@ -6,6 +6,7 @@ system dependencies. FFmpeg does not need to be installed on the system.
However, the API is quite low-level so we need to manipulate audio frames directly.
"""
import gc
import io
import itertools
@@ -42,7 +43,7 @@ def decode_audio(
raw_buffer = io.BytesIO()
dtype = None
with av.open(input_file, metadata_errors="ignore") as container:
with av.open(input_file, mode="r", metadata_errors="ignore") as container:
frames = container.decode(audio=0)
frames = _ignore_invalid_frames(frames)
frames = _group_frames(frames, 500000)
@@ -53,6 +54,11 @@ def decode_audio(
dtype = array.dtype
raw_buffer.write(array)
# It appears that some objects related to the resampler are not freed
# unless the garbage collector is manually run.
del resampler
gc.collect()
audio = np.frombuffer(raw_buffer.getbuffer(), dtype=dtype)
# Convert s16 back to f32.

View File

@@ -19,15 +19,21 @@ class Tokenizer:
self.tokenizer = tokenizer
if multilingual:
if task not in _TASKS:
raise ValueError(
"'%s' is not a valid task (accepted tasks: %s)"
% (task, ", ".join(_TASKS))
)
if language not in _LANGUAGE_CODES:
raise ValueError(
"'%s' is not a valid language code (accepted language codes: %s)"
% (language, ", ".join(_LANGUAGE_CODES))
)
self.task = self.tokenizer.token_to_id("<|%s|>" % task)
if self.task is None:
raise ValueError("%s is not a valid task" % task)
self.language_code = language
self.language = self.tokenizer.token_to_id("<|%s|>" % language)
if self.language is None:
raise ValueError("%s is not a valid language code" % language)
self.language_code = language
else:
self.task = None
self.language = None
@@ -102,7 +108,7 @@ class Tokenizer:
def split_to_word_tokens(
self, tokens: List[int]
) -> Tuple[List[str], List[List[int]]]:
if self.language_code in {"zh", "ja", "th", "lo", "my"}:
if self.language_code in {"zh", "ja", "th", "lo", "my", "yue"}:
# These languages don't typically use spaces, so it is difficult to split words
# without morpheme analysis. Here, we instead split words at any
# position where the tokens are decoded as valid unicode points
@@ -161,3 +167,112 @@ class Tokenizer:
word_tokens[-1].extend(subword_tokens)
return words, word_tokens
_TASKS = (
"transcribe",
"translate",
)
_LANGUAGE_CODES = (
"af",
"am",
"ar",
"as",
"az",
"ba",
"be",
"bg",
"bn",
"bo",
"br",
"bs",
"ca",
"cs",
"cy",
"da",
"de",
"el",
"en",
"es",
"et",
"eu",
"fa",
"fi",
"fo",
"fr",
"gl",
"gu",
"ha",
"haw",
"he",
"hi",
"hr",
"ht",
"hu",
"hy",
"id",
"is",
"it",
"ja",
"jw",
"ka",
"kk",
"km",
"kn",
"ko",
"la",
"lb",
"ln",
"lo",
"lt",
"lv",
"mg",
"mi",
"mk",
"ml",
"mn",
"mr",
"ms",
"mt",
"my",
"ne",
"nl",
"nn",
"no",
"oc",
"pa",
"pl",
"ps",
"pt",
"ro",
"ru",
"sa",
"sd",
"si",
"sk",
"sl",
"sn",
"so",
"sq",
"sr",
"su",
"sv",
"sw",
"ta",
"te",
"tg",
"th",
"tk",
"tl",
"tr",
"tt",
"uk",
"ur",
"uz",
"vi",
"yi",
"yo",
"zh",
"yue",
)

View File

@@ -1,8 +1,10 @@
import itertools
import json
import logging
import os
import zlib
from inspect import signature
from typing import BinaryIO, Iterable, List, NamedTuple, Optional, Tuple, Union
import ctranslate2
@@ -11,7 +13,7 @@ import tokenizers
from faster_whisper.audio import decode_audio
from faster_whisper.feature_extractor import FeatureExtractor
from faster_whisper.tokenizer import Tokenizer
from faster_whisper.tokenizer import _LANGUAGE_CODES, Tokenizer
from faster_whisper.utils import download_model, format_timestamp, get_logger
from faster_whisper.vad import (
SpeechTimestampsMap,
@@ -47,10 +49,13 @@ class TranscriptionOptions(NamedTuple):
best_of: int
patience: float
length_penalty: float
repetition_penalty: float
no_repeat_ngram_size: int
log_prob_threshold: Optional[float]
no_speech_threshold: Optional[float]
compression_ratio_threshold: Optional[float]
condition_on_previous_text: bool
prompt_reset_on_temperature: float
temperatures: List[float]
initial_prompt: Optional[Union[str, Iterable[int]]]
prefix: Optional[str]
@@ -67,6 +72,7 @@ class TranscriptionInfo(NamedTuple):
language: str
language_probability: float
duration: float
duration_after_vad: float
all_language_probs: Optional[List[Tuple[str, float]]]
transcription_options: TranscriptionOptions
vad_options: VadOptions
@@ -88,8 +94,9 @@ class WhisperModel:
Args:
model_size_or_path: Size of the model to use (tiny, tiny.en, base, base.en,
small, small.en, medium, medium.en, large-v1, or large-v2) or a path to a converted
model directory. When a size is configured, the converted model is downloaded
small, small.en, medium, medium.en, large-v1, large-v2, large-v3, or large), a path to a
converted model directory, or a CTranslate2-converted Whisper model ID from the HF Hub.
When a size or a model ID is configured, the converted model is downloaded
from the Hugging Face Hub.
device: Device to use for computation ("cpu", "cuda", "auto").
device_index: Device ID to use.
@@ -137,7 +144,8 @@ class WhisperModel:
"openai/whisper-tiny" + ("" if self.model.is_multilingual else ".en")
)
self.feature_extractor = FeatureExtractor()
self.feat_kwargs = self._get_feature_kwargs(model_path)
self.feature_extractor = FeatureExtractor(**self.feat_kwargs)
self.num_samples_per_token = self.feature_extractor.hop_length * 2
self.frames_per_second = (
self.feature_extractor.sampling_rate // self.feature_extractor.hop_length
@@ -149,6 +157,27 @@ class WhisperModel:
self.time_precision = 0.02
self.max_length = 448
@property
def supported_languages(self) -> List[str]:
"""The languages supported by the model."""
return list(_LANGUAGE_CODES) if self.model.is_multilingual else ["en"]
def _get_feature_kwargs(self, model_path) -> dict:
preprocessor_config_file = os.path.join(model_path, "preprocessor_config.json")
config = {}
if os.path.isfile(preprocessor_config_file):
try:
with open(preprocessor_config_file, "r", encoding="utf-8") as json_file:
config = json.load(json_file)
valid_keys = signature(FeatureExtractor.__init__).parameters.keys()
config = {k: v for k, v in config.items() if k in valid_keys}
except json.JSONDecodeError as e:
self.logger.warning(
"Could not load preprocessor_config.json: %s", str(e)
)
return config
def transcribe(
self,
audio: Union[str, BinaryIO, np.ndarray],
@@ -158,6 +187,8 @@ class WhisperModel:
best_of: int = 5,
patience: float = 1,
length_penalty: float = 1,
repetition_penalty: float = 1,
no_repeat_ngram_size: int = 0,
temperature: Union[float, List[float], Tuple[float, ...]] = [
0.0,
0.2,
@@ -170,6 +201,7 @@ class WhisperModel:
log_prob_threshold: Optional[float] = -1.0,
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = True,
prompt_reset_on_temperature: float = 0.5,
initial_prompt: Optional[Union[str, Iterable[int]]] = None,
prefix: Optional[str] = None,
suppress_blank: bool = True,
@@ -194,6 +226,9 @@ class WhisperModel:
best_of: Number of candidates when sampling with non-zero temperature.
patience: Beam search patience factor.
length_penalty: Exponential length penalty constant.
repetition_penalty: Penalty applied to the score of previously generated tokens
(set > 1 to penalize).
no_repeat_ngram_size: Prevent repetitions of ngrams with this size (set 0 to disable).
temperature: Temperature for sampling. It can be a tuple of temperatures,
which will be successively used upon failures according to either
`compression_ratio_threshold` or `log_prob_threshold`.
@@ -208,6 +243,8 @@ class WhisperModel:
as a prompt for the next window; disabling may make the text inconsistent across
windows, but the model becomes less prone to getting stuck in a failure loop,
such as repetition looping or timestamps going out of sync.
prompt_reset_on_temperature: Resets prompt if temperature is above this value.
Arg has effect only if condition_on_previous_text is True.
initial_prompt: Optional text string or iterable of token ids to provide as a
prompt for the first window.
prefix: Optional text to provide as a prefix for the first window.
@@ -240,6 +277,7 @@ class WhisperModel:
audio = decode_audio(audio, sampling_rate=sampling_rate)
duration = audio.shape[0] / sampling_rate
duration_after_vad = duration
self.logger.info(
"Processing audio with duration %s", format_timestamp(duration)
@@ -252,10 +290,11 @@ class WhisperModel:
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
self.logger.info(
"VAD filter removed %s of audio",
format_timestamp(duration - (audio.shape[0] / sampling_rate)),
format_timestamp(duration - duration_after_vad),
)
if self.logger.isEnabledFor(logging.DEBUG):
@@ -300,6 +339,13 @@ class WhisperModel:
language_probability,
)
else:
if not self.model.is_multilingual and language != "en":
self.logger.warning(
"The current model is English-only but the language parameter is set to '%s'; "
"using 'en' instead." % language
)
language = "en"
language_probability = 1
tokenizer = Tokenizer(
@@ -314,10 +360,13 @@ class WhisperModel:
best_of=best_of,
patience=patience,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
compression_ratio_threshold=compression_ratio_threshold,
condition_on_previous_text=condition_on_previous_text,
prompt_reset_on_temperature=prompt_reset_on_temperature,
temperatures=(
temperature if isinstance(temperature, (list, tuple)) else [temperature]
),
@@ -341,6 +390,7 @@ class WhisperModel:
language=language,
language_probability=language_probability,
duration=duration,
duration_after_vad=duration_after_vad,
transcription_options=options,
vad_options=vad_parameters,
all_language_probs=all_language_probs,
@@ -370,6 +420,7 @@ class WhisperModel:
else:
all_tokens.extend(options.initial_prompt)
last_speech_timestamp = 0.0
while seek < content_frames:
time_offset = seek * self.feature_extractor.time_per_frame
segment = features[:, seek : seek + self.feature_extractor.nb_max_frames]
@@ -391,7 +442,7 @@ class WhisperModel:
prefix=options.prefix if seek == 0 else None,
)
if encoder_output is None:
if seek > 0 or encoder_output is None:
encoder_output = self.encode(segment)
(
@@ -511,12 +562,14 @@ class WhisperModel:
segment_size,
options.prepend_punctuations,
options.append_punctuations,
last_speech_timestamp=last_speech_timestamp,
)
word_end_timestamps = [
w["end"] for s in current_segments for w in s["words"]
]
if len(word_end_timestamps) > 0:
last_speech_timestamp = word_end_timestamps[-1]
if not single_timestamp_ending and len(word_end_timestamps) > 0:
seek_shift = round(
(word_end_timestamps[-1] - time_offset) * self.frames_per_second
@@ -525,8 +578,6 @@ class WhisperModel:
if seek_shift > 0:
seek = previous_seek + seek_shift
encoder_output = None
for segment in current_segments:
tokens = segment["tokens"]
text = tokenizer.decode(tokens)
@@ -563,7 +614,17 @@ class WhisperModel:
),
)
if not options.condition_on_previous_text or temperature > 0.5:
if (
not options.condition_on_previous_text
or temperature > options.prompt_reset_on_temperature
):
if options.condition_on_previous_text:
self.logger.debug(
"Reset prompt. prompt_reset_on_temperature threshold is met %f > %f",
temperature,
options.prompt_reset_on_temperature,
)
prompt_reset_since = len(all_tokens)
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
@@ -583,10 +644,9 @@ class WhisperModel:
tokenizer: Tokenizer,
options: TranscriptionOptions,
) -> Tuple[ctranslate2.models.WhisperGenerationResult, float, float, float]:
result = None
avg_logprob = None
final_temperature = None
compression_ratio = None
decode_result = None
all_results = []
below_cr_threshold_results = []
max_initial_timestamp_index = int(
round(options.max_initial_timestamp / self.time_precision)
@@ -606,11 +666,12 @@ class WhisperModel:
"patience": options.patience,
}
final_temperature = temperature
result = self.model.generate(
encoder_output,
[prompt],
length_penalty=options.length_penalty,
repetition_penalty=options.repetition_penalty,
no_repeat_ngram_size=options.no_repeat_ngram_size,
max_length=self.max_length,
return_scores=True,
return_no_speech_prob=True,
@@ -630,20 +691,28 @@ class WhisperModel:
text = tokenizer.decode(tokens).strip()
compression_ratio = get_compression_ratio(text)
decode_result = (
result,
avg_logprob,
temperature,
compression_ratio,
)
all_results.append(decode_result)
needs_fallback = False
if (
options.compression_ratio_threshold is not None
and compression_ratio > options.compression_ratio_threshold
):
needs_fallback = True # too repetitive
if options.compression_ratio_threshold is not None:
if compression_ratio > options.compression_ratio_threshold:
needs_fallback = True # too repetitive
self.logger.debug(
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
temperature,
compression_ratio,
options.compression_ratio_threshold,
)
self.logger.debug(
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
temperature,
compression_ratio,
options.compression_ratio_threshold,
)
else:
below_cr_threshold_results.append(decode_result)
if (
options.log_prob_threshold is not None
@@ -658,10 +727,28 @@ class WhisperModel:
options.log_prob_threshold,
)
if (
options.no_speech_threshold is not None
and result.no_speech_prob > options.no_speech_threshold
):
needs_fallback = False # silence
if not needs_fallback:
break
else:
# all failed, select the result with the highest average log probability
decode_result = max(
below_cr_threshold_results or all_results, key=lambda x: x[1]
)
# to pass final temperature for prompt_reset_on_temperature
decode_result = (
decode_result[0],
decode_result[1],
temperature,
decode_result[3],
)
return result, avg_logprob, final_temperature, compression_ratio
return decode_result
def get_prompt(
self,
@@ -685,6 +772,8 @@ class WhisperModel:
prefix_tokens = tokenizer.encode(" " + prefix.strip())
if len(prefix_tokens) >= self.max_length // 2:
prefix_tokens = prefix_tokens[: self.max_length // 2 - 1]
if not without_timestamps:
prompt.append(tokenizer.timestamp_begin)
prompt.extend(prefix_tokens)
return prompt
@@ -697,7 +786,8 @@ class WhisperModel:
num_frames: int,
prepend_punctuations: str,
append_punctuations: str,
):
last_speech_timestamp: float,
) -> None:
if len(segments) == 0:
return
@@ -710,6 +800,24 @@ class WhisperModel:
alignment = self.find_alignment(
tokenizer, text_tokens, encoder_output, num_frames
)
word_durations = np.array([word["end"] - word["start"] for word in alignment])
word_durations = word_durations[word_durations.nonzero()]
median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
max_duration = median_duration * 2
# hack: truncate long words at sentence boundaries.
# a better segmentation algorithm based on VAD should be able to replace this.
if len(word_durations) > 0:
sentence_end_marks = ".。!?"
# ensure words at sentence boundaries
# are not longer than twice the median word duration.
for i in range(1, len(alignment)):
if alignment[i]["end"] - alignment[i]["start"] > max_duration:
if alignment[i]["word"] in sentence_end_marks:
alignment[i]["end"] = alignment[i]["start"] + max_duration
elif alignment[i - 1]["word"] in sentence_end_marks:
alignment[i]["start"] = alignment[i]["end"] - max_duration
merge_punctuations(alignment, prepend_punctuations, append_punctuations)
time_offset = (
@@ -740,10 +848,51 @@ class WhisperModel:
saved_tokens += len(timing["tokens"])
word_index += 1
# hack: truncate long words at segment boundaries.
# a better segmentation algorithm based on VAD should be able to replace this.
if len(words) > 0:
# adjust the segment-level timestamps based on the word-level timestamps
segment["start"] = words[0]["start"]
segment["end"] = words[-1]["end"]
# ensure the first and second word after a pause is not longer than
# twice the median word duration.
if words[0]["end"] - last_speech_timestamp > median_duration * 4 and (
words[0]["end"] - words[0]["start"] > max_duration
or (
len(words) > 1
and words[1]["end"] - words[0]["start"] > max_duration * 2
)
):
if (
len(words) > 1
and words[1]["end"] - words[1]["start"] > max_duration
):
boundary = max(
words[1]["end"] / 2, words[1]["end"] - max_duration
)
words[0]["end"] = words[1]["start"] = boundary
words[0]["start"] = max(0, words[0]["end"] - max_duration)
# prefer the segment-level start timestamp if the first word is too long.
if (
segment["start"] < words[0]["end"]
and segment["start"] - 0.5 > words[0]["start"]
):
words[0]["start"] = max(
0, min(words[0]["end"] - median_duration, segment["start"])
)
else:
segment["start"] = words[0]["start"]
# prefer the segment-level end timestamp if the last word is too long.
if (
segment["end"] > words[-1]["start"]
and segment["end"] + 0.5 < words[-1]["end"]
):
words[-1]["end"] = max(
words[-1]["start"] + median_duration, segment["end"]
)
else:
segment["end"] = words[-1]["end"]
last_speech_timestamp = segment["end"]
segment["words"] = words
@@ -775,6 +924,13 @@ class WhisperModel:
words, word_tokens = tokenizer.split_to_word_tokens(
text_tokens + [tokenizer.eot]
)
if len(word_tokens) <= 1:
# return on eot only
# >>> np.pad([], (1, 0))
# array([0.])
# This results in crashes when we lookup jump_times with float, like
# IndexError: arrays used as indices must be of integer (or boolean) type
return []
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
if len(word_boundaries) <= 1:
return []
@@ -788,22 +944,6 @@ class WhisperModel:
for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
]
# hack: ensure the first and second word is not longer than twice the median word duration.
# a better segmentation algorithm based on VAD should be able to replace this.
word_durations = end_times - start_times
word_durations = word_durations[word_durations.nonzero()]
if len(word_durations) > 0:
median_duration = np.median(word_durations)
max_duration = median_duration * 2
if len(word_durations) >= 2 and word_durations[1] > max_duration:
boundary = max(end_times[2] / 2, end_times[2] - max_duration)
end_times[0] = start_times[1] = boundary
if (
len(word_durations) >= 1
and end_times[0] - start_times[0] > max_duration
):
start_times[0] = max(0, end_times[0] - max_duration)
return [
dict(
word=word, tokens=tokens, start=start, end=end, probability=probability
@@ -860,7 +1000,10 @@ def get_compression_ratio(text: str) -> float:
return len(text_bytes) / len(zlib.compress(text_bytes))
def get_suppressed_tokens(tokenizer, suppress_tokens):
def get_suppressed_tokens(
tokenizer: Tokenizer,
suppress_tokens: Optional[List[int]],
) -> Optional[List[int]]:
if not suppress_tokens or -1 in suppress_tokens:
return suppress_tokens
@@ -881,7 +1024,7 @@ def get_suppressed_tokens(tokenizer, suppress_tokens):
return sorted(set(suppress_tokens))
def merge_punctuations(alignment: List[dict], prepended: str, appended: str):
def merge_punctuations(alignment: List[dict], prepended: str, appended: str) -> None:
# merge prepended punctuations
i = len(alignment) - 2
j = len(alignment) - 1

View File

@@ -1,25 +1,33 @@
import logging
import os
import re
from typing import Optional
from typing import List, Optional
import huggingface_hub
import requests
from tqdm.auto import tqdm
_MODELS = (
"tiny.en",
"tiny",
"base.en",
"base",
"small.en",
"small",
"medium.en",
"medium",
"large-v1",
"large-v2",
)
_MODELS = {
"tiny.en": "Systran/faster-whisper-tiny.en",
"tiny": "Systran/faster-whisper-tiny",
"base.en": "Systran/faster-whisper-base.en",
"base": "Systran/faster-whisper-base",
"small.en": "Systran/faster-whisper-small.en",
"small": "Systran/faster-whisper-small",
"medium.en": "Systran/faster-whisper-medium.en",
"medium": "Systran/faster-whisper-medium",
"large-v1": "Systran/faster-whisper-large-v1",
"large-v2": "Systran/faster-whisper-large-v2",
"large-v3": "Systran/faster-whisper-large-v3",
"large": "Systran/faster-whisper-large-v3",
}
def available_models() -> List[str]:
"""Returns the names of available models."""
return list(_MODELS.keys())
def get_assets_path():
@@ -33,18 +41,18 @@ def get_logger():
def download_model(
size: str,
size_or_id: str,
output_dir: Optional[str] = None,
local_files_only: bool = False,
cache_dir: Optional[str] = None,
):
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
The model is downloaded from https://huggingface.co/guillaumekln.
Args:
size: Size of the model to download (tiny, tiny.en, base, base.en, small, small.en,
medium, medium.en, large-v1, or large-v2).
size_or_id: Size of the model to download from https://huggingface.co/guillaumekln
(tiny, tiny.en, base, base.en, small, small.en medium, medium.en, large-v1, large-v2,
large-v3, large), or a CTranslate2-converted model ID from the Hugging Face Hub
(e.g. Systran/faster-whisper-large-v3).
output_dir: Directory where the model should be saved. If not set, the model is saved in
the cache directory.
local_files_only: If True, avoid downloading the file and return the path to the local
@@ -57,15 +65,19 @@ def download_model(
Raises:
ValueError: if the model size is invalid.
"""
if size not in _MODELS:
raise ValueError(
"Invalid model size '%s', expected one of: %s" % (size, ", ".join(_MODELS))
)
repo_id = "guillaumekln/faster-whisper-%s" % size
if re.match(r".*/.*", size_or_id):
repo_id = size_or_id
else:
repo_id = _MODELS.get(size_or_id)
if repo_id is None:
raise ValueError(
"Invalid model size '%s', expected one of: %s"
% (size_or_id, ", ".join(_MODELS.keys()))
)
allow_patterns = [
"config.json",
"preprocessor_config.json",
"model.bin",
"tokenizer.json",
"vocabulary.*",

View File

@@ -1,3 +1,3 @@
"""Version information."""
__version__ = "0.6.0"
__version__ = "0.10.0"

View File

@@ -1,5 +1,5 @@
av==10.*
ctranslate2>=3.10,<4
ctranslate2>=3.22,<4
huggingface_hub>=0.13
tokenizers==0.13.*
tokenizers>=0.13,<0.16
onnxruntime>=1.14,<2

View File

@@ -3,6 +3,11 @@ import os
from faster_whisper import WhisperModel, decode_audio
def test_supported_languages():
model = WhisperModel("tiny.en")
assert model.supported_languages == ["en"]
def test_transcribe(jfk_path):
model = WhisperModel("tiny")
segments, info = model.transcribe(jfk_path, word_timestamps=True)
@@ -34,6 +39,24 @@ def test_transcribe(jfk_path):
assert segment.end == segment.words[-1].end
def test_prefix_with_timestamps(jfk_path):
model = WhisperModel("tiny")
segments, _ = model.transcribe(jfk_path, prefix="And so my fellow Americans")
segments = list(segments)
assert len(segments) == 1
segment = segments[0]
assert segment.text == (
" And so my fellow Americans ask not what your country can do for you, "
"ask what you can do for your country."
)
assert segment.start == 0
assert 10 < segment.end < 11
def test_vad(jfk_path):
model = WhisperModel("tiny")
segments, info = model.transcribe(

View File

@@ -1,6 +1,12 @@
import os
from faster_whisper import download_model
from faster_whisper import available_models, download_model
def test_available_models():
models = available_models()
assert isinstance(models, list)
assert "tiny" in models
def test_download_model(tmpdir):