Compare commits

...

98 Commits

Author SHA1 Message Date
otakutyrant
91c8307aa6 make faster_whisper.assets as a valid python package to distribute (#772) (#774) 2024-04-02 18:22:22 +02:00
Purfview
b024972a56 Foolproof: Disable VAD if clip_timestamps is in use (#769)
* Foolproof: Disable VAD if clip_timestamps is in use

Prevent silly things to happen.
2024-04-02 18:20:34 +02:00
Purfview
8ae82c8372 Bugfix: code breaks if audio is empty (#768)
* Bugfix: code breaks if audio is empty

Regression since https://github.com/SYSTRAN/faster-whisper/pull/732 PR
2024-04-02 18:18:12 +02:00
trungkienbkhn
e0c3a9ed34 Update project github link to SYSTRAN (#746) 2024-03-27 08:31:17 +01:00
Sanchit Gandhi
a67e0e47ae Add support for distil-large-v3 (#755)
* add distil-large-v3

* Update README.md

* use fp16 weights from Systran
2024-03-26 14:58:39 +01:00
trungkienbkhn
1eb9a8004c Improve language detection (#732) 2024-03-12 15:44:49 +01:00
trungkienbkhn
a342b028b7 Bump version to 1.0.1 (#725) 2024-03-01 11:32:12 +01:00
Purfview
5090cc9d0d Fix window end heuristic for hallucination_silence_threshold (#706)
Removes the wishful heuristic causing more issues than it's fixing.

Same as https://github.com/openai/whisper/pull/2043

Example of the issue: https://github.com/openai/whisper/pull/1838#issuecomment-1960041500
2024-02-29 17:59:32 +01:00
Gabriel F
09cd57e7f3 Fix typo 'ditil' (#721) 2024-02-29 17:08:58 +01:00
trungkienbkhn
16141e65d9 Add pad_or_trim function to handle segment before encoding (#705) 2024-02-29 17:08:28 +01:00
trungkienbkhn
06d32bf0c1 Bump version to 1.0.0 (#696) 2024-02-22 09:49:01 +01:00
Purfview
30d6043e90 Prevent infinite loop for out-of-bound timestamps in clip_timestamps (#697)
Same as https://github.com/openai/whisper/pull/2005
2024-02-22 09:48:35 +01:00
BBC-Esq
22c75d0cc3 Update README.md (#672)
Add Faster-Whisper-Transcriber to community integrations.
2024-02-21 10:18:11 +01:00
trungkienbkhn
092067208b Add clip_timestamps and hallucination_silence_threshold options (#646) 2024-02-20 17:34:54 +01:00
Jordi Mas
6ffcbdfbc2 Fix typos in README.md (#668) 2024-02-20 17:33:17 +01:00
Purfview
52695567c9 Bumps up PyAV version to support Python 3.12.x (#679) 2024-02-20 17:31:07 +01:00
IlianP
c6b28ed3a0 Update README.md (#685)
I'm surprised that WhisperX hasn't made it into this list yet, as it has more stars than faster-whisper itself 🚀
2024-02-20 17:28:00 +01:00
trungkienbkhn
4ab646035f Upgrade ctranslate2 version to support CUDA 12 (#694) 2024-02-20 17:26:55 +01:00
Purfview
f144e4c83d Expands the note for distil-whisper (#659) 2024-01-28 21:48:40 +01:00
Purfview
3aec421849 Add: More clarity of what "max_new_tokens" does (#658)
* Add: More clarity of what "max_new_tokens" does
2024-01-28 21:40:33 +01:00
Dominik Macháček
64b9f244bd Whisper-Streaming mention (#656)
under community integrations
2024-01-25 18:27:27 +01:00
Purfview
00efce1696 Bugfix: Illogical "Avoid computing higher temperatures on no_speech" (#652) 2024-01-24 11:54:43 +01:00
metame
ad3c83045b support distil-whisper (#557) 2024-01-24 10:17:12 +01:00
Jürgen Fleiß
72ff979a2e Add GUI faster-whisper project README.md (#554)
Added aTrain GUI faster-whisper transcription and diarization tool as community project.

Co-authored-by: JuergenFleiss <118339672+Juergen-J-F@users.noreply.github.com>
2024-01-18 13:01:02 +01:00
makaveli
615de0d2d9 add WhisperLive to community integration (#647) 2024-01-18 12:54:14 +01:00
Purfview
44f7e58947 Update whisper-standalone-win description in README.md (#508)
* Update whisper-standalone-win description in README.md
2023-12-14 13:03:46 +01:00
Purfview
ebcfd6b964 Fix broken prompt_reset_on_temperature (#604)
* Fix broken prompt_reset_on_temperature

Fixing: https://github.com/SYSTRAN/faster-whisper/issues/603

Broken because `generate_with_fallback()` doesn't return final temperature.

Regression since PR356 -> https://github.com/SYSTRAN/faster-whisper/pull/356
2023-12-13 13:14:39 +01:00
trungkienbkhn
19329a3611 Word timing tweaks (#616) 2023-12-13 12:38:44 +01:00
Purfview
65094b779e Update info on cuBLAS and cuDNN libs in README.md (#513) 2023-11-27 12:12:47 +01:00
Clayton Yochum
9641d5f56a Force read-mode in av.open (#566)
The `av.open` functions checks input metadata to determine the mode to open with ("r" or "w"). If an input to `decode_audio` is found to be in write-mode, without this change it can't be read. Forcing read mode solves this.
2023-11-27 10:43:35 +01:00
Dang Chuan Nguyen
e1a218fab1 Bump version to 0.10.0 2023-11-24 23:19:47 +01:00
Oscaarjs
3084409633 Add V3 Support (#578)
* Add V3 Support

* update conversion example

---------

Co-authored-by: oscaarjs <oscar.johansson@conversy.se>
2023-11-24 23:16:12 +01:00
Guillaume Klein
5a0541ea7d Bump version to 0.9.0 2023-09-18 16:21:37 +02:00
Guillaume Klein
e94711bb5c Add property WhisperModel.supported_languages (#476)
* Expose function supported_languages

* Make it a method
2023-09-14 17:42:02 +02:00
Guillaume Klein
0048844f54 Expose function available_models (#475)
* Expose function available_models

* Add test case
2023-09-14 17:17:01 +02:00
Guillaume Klein
a49097e655 Add some missing typing annotations in transcribe.py 2023-09-12 15:45:54 +02:00
Guillaume Klein
81086f6d33 Always run the encoder at the beginning of the loop (#468) 2023-09-12 14:44:37 +02:00
Guillaume Klein
f697945691 Update tokenizers requirement to include version 0.14 (#469) 2023-09-12 14:44:22 +02:00
Guillaume Klein
727ab81f31 Improve error message for invalid task and language parameters (#466) 2023-09-12 10:02:23 +02:00
Guillaume Klein
0285d46f6f Add more details about the requirements in the README (#463) 2023-09-08 14:35:17 +02:00
Guillaume Klein
ad388cd394 Bump version to 0.8.0 2023-09-04 11:56:48 +02:00
Guillaume Klein
4a41746e55 Log a warning when the model is English-only but the language is set to something else (#454) 2023-09-04 11:55:40 +02:00
Guillaume Klein
1e6eb967c9 Add "large" alias for "large-v2" model (#453) 2023-09-04 11:54:42 +02:00
Guillaume Klein
f0ff12965a Expose generation parameter no_repeat_ngram_size (#449) 2023-09-01 17:31:30 +02:00
Guillaume Klein
5871858a5f Force the garbage collector to run after decoding the audio with PyAV (#448) 2023-09-01 15:25:13 +02:00
MinorJinx
e87fbf8a49 Added audio duration after VAD to TranscriptionInfo object (#445)
* Added VAD removed audio duration to TranscriptionInfo object

Along with the duration of the original audio, this commit  adds the seconds of audio removed by the VAD to the returned info obj

* Chaning naming for duration_after_vad

Instead of the property returning the audio duration removed, it now returns the final duration after the vad.
If vad_filter is False or if it doesn't remove any audio, the original duration is returned.
2023-08-31 17:19:48 +02:00
Hrishikesh Barman
7b271da035 docs: add wscribe to community integrations (#427)
wscribe is a utility to generate transcript specifically to make it easy
for further manual edits accompanied by the wscribe-editor
2023-08-17 08:50:24 +02:00
Aisu Wata
1562b02345 added repetition_penalty to TranscriptionOptions (#403)
Co-authored-by: Aisu Wata <aisu.wata0@gmail.com>
2023-08-06 10:08:24 +02:00
Purfview
1ce16652ee Adds DEBUG log message for prompt_reset_on_temperature (#399)
Produce DEBUG log message if prompt_reset_on_temperature threshold is met.
2023-08-04 09:06:17 +02:00
Purfview
857be6f621 Rename clear_previous_text_on_temperature argument (#398)
`prompt_reset_on_temperature` is more clear what it does.
2023-08-03 18:44:37 +02:00
KH
1a1eb1a027 Add clear_previous_text_on_temperature parameter (#397)
* Add clear_previous_text_on_temperature parameter

* Add a description
2023-08-03 15:40:58 +02:00
Guillaume Klein
5c17de1771 Bump version to 0.7.1 2023-07-24 11:10:12 +02:00
Guillaume Klein
0f55c436fe Invalidate the cached encoder output when no_speech threshold is met (#376) 2023-07-24 10:57:15 +02:00
KH
e786e26f75 Return result with best log prob when all temperature fallbacks failed (#356)
* Resolve Inference Selection Bug

* Refactor for better readability

* Filter out results with compression_ratio

* Refactor to avoid variable repetition

* Fix incorrect index and perform minor refactoring

* Remove final_temperature variable
2023-07-20 16:13:11 +02:00
KH
687db319e0 Remove duplicate code (#359) 2023-07-18 16:03:01 +02:00
Guillaume Klein
171d90dd1f Bump version to 0.7.0 2023-07-18 15:23:47 +02:00
Guillaume Klein
0e051a5b77 Prepend prefix tokens with the initial timestamp token (#358) 2023-07-18 15:22:39 +02:00
Guillaume Klein
2a37390fed Minor reformatting in code snippet 2023-07-18 15:08:53 +02:00
Hoon
3b4a6aa1c2 Improve timestamp heuristics (#336)
* Improve timestamp heuristics

* Chore
2023-07-05 15:16:53 +02:00
zh-plus
c7cb2aa8d4 Add support for using whisper models from Huggingface by specifying the model id. (#334)
* Add support for downloading CTranslate-converted models from Huggingface.

* Update utils.py to pass Flake8.

* Update utils.py to pass black.

* Remove redundant usage instructions.

* Apply suggestions from code review

Co-authored-by: Guillaume Klein <guillaumekln@users.noreply.github.com>

---------

Co-authored-by: Guillaume Klein <guillaumekln@users.noreply.github.com>
2023-07-03 17:40:10 +02:00
Guillaume Klein
c0d93d0829 Avoid computing higher temperatures on no_speech segments (#225)
Port commit e334ff141d
2023-07-03 10:20:36 +02:00
Guillaume Klein
19c294f978 Squash long words at window and sentence boundaries (#226)
Port commit 255887f219
2023-07-03 10:20:20 +02:00
FlippFuzz
fee52c9229 Allow users to input an Iterable of token ids into initial_prompt (#306)
* Allow users to input an Iterable of token ids into initial_prompt

* Need to check for String first because string is also an Iterable
2023-06-21 14:46:20 +02:00
Guillaume Klein
efc4f61d85 Do not specify the vocabulary file extension in the download pattern (#311) 2023-06-20 10:53:11 +02:00
kh
ad58ba26ab Fix typo (#304)
https://github.com/snakers4/silero-vad/discussions/319#discussion-5081706
2023-06-16 07:37:45 +02:00
zh-plus
20d4e9418b Add Open-Lyrics as a community project. (#291) 2023-06-10 08:22:29 +02:00
Antonio Zarauz Moreno
d4222da952 Update README with community repo using FW (#284)
* Update README with community repo using FW

* Minor formatting change

---------

Co-authored-by: Guillaume Klein <guillaumekln@users.noreply.github.com>
2023-06-07 11:30:53 +02:00
Guillaume Klein
1bb7e33b93 Reformat code snippet in README 2023-05-24 18:22:44 +02:00
Guillaume Klein
2a00621564 Bump version to 0.6.0 2023-05-24 16:15:01 +02:00
Guillaume Klein
a150adcc19 Enable onnxruntime dependency for Python 3.11 (#260) 2023-05-24 16:07:54 +02:00
Guillaume Klein
ae1e6d9883 Remove reference to the VAD function from the README 2023-05-24 15:56:21 +02:00
Guillaume Klein
cf7c021573 Export __version__ at the module level (#258) 2023-05-24 15:50:37 +02:00
Guillaume Klein
4db549b800 Make get_speech_timestamps backward compatible with the previous usage (#259) 2023-05-24 15:49:36 +02:00
Guillaume Klein
c99feb22dc Include requirements files in sdist (#240) 2023-05-24 12:55:15 +02:00
Guillaume Klein
723cb97483 Fix occasional IndexError on empty segments (#227) 2023-05-24 12:55:04 +02:00
Guillaume Klein
6a2da9a95c Also catch client-side network exceptions when synchronizing models (#228) 2023-05-11 15:07:15 +02:00
Guillaume Klein
6a1d331d66 Add CONTRIBUTING.md (#229) 2023-05-11 15:06:46 +02:00
Guillaume Klein
2d7c984bfc Reformat function download_model for clarity 2023-05-11 14:47:22 +02:00
Guillaume Klein
8e5c747ab5 Reformat list of community integrations 2023-05-11 12:15:41 +02:00
Purfview
32b962bed8 Adds: whisper-standalone-win (#216) 2023-05-09 20:20:41 +02:00
David Axelrod
53d247b0bb retry model download locally if huggingface throws an http error. (#215)
* rety model download locally if huggingface throws an http error.

* appease the linter

* key error fix

* use non internal lib error

Co-authored-by: Guillaume Klein <guillaumekln@users.noreply.github.com>

---------

Co-authored-by: Guillaume Klein <guillaumekln@users.noreply.github.com>
2023-05-09 17:20:22 +02:00
Ozan Caglayan
91f948b0d6 transcribe: return all language probabilities if requested (#210)
* transcribe: return all language probabilities if requested

If return_all_language_probs is True, TranscriptionInfo structure
will have a list of tuples reflecting all language probabilities
as returned by the model.

* transcribe: fix docstring

* transcribe: remove return_all_lang_probs parameter
2023-05-09 14:53:47 +02:00
FlippFuzz
5d8f3e2d90 Implement VadOptions (#198)
* Implement VadOptions

* Fix line too long

./faster_whisper/transcribe.py:226:101: E501 line too long (111 > 100 characters)

* Reformatted files with black

* black .\faster_whisper\vad.py    
* black .\faster_whisper\transcribe.py

* Fix import order with isort

* isort .\faster_whisper\vad.py
* isort .\faster_whisper\transcribe.py

* Made recommended changes

Recommended in https://github.com/guillaumekln/faster-whisper/pull/198

* Fix typing of vad_options argument

---------

Co-authored-by: Guillaume Klein <guillaumekln@users.noreply.github.com>
2023-05-09 12:47:02 +02:00
Mahmoud Ashraf
d889345e07 added whisper-diarize (#193) 2023-04-28 10:56:13 +02:00
Jordi Mas
5d203d2757 Update Github link to community project (#187) 2023-04-27 14:53:28 +02:00
Guillaume Klein
a3dcb90081 Bump version to 0.5.1 2023-04-26 17:38:16 +02:00
Guillaume Klein
89a4c7f1f0 Update docstring to clarify download_root and output_dir 2023-04-26 17:37:51 +02:00
Guillaume Klein
6f9d68dd6b Fix typing of local_files_only 2023-04-26 17:36:24 +02:00
Jordi Mas
68df3214ba Use cache_dir instead of local_dir (#182)
* Use cache_dir instead of local_dir

* Fix unit test

* Use cache_dir and preserve local_dir parameter

* Remove blank line at the end

* Disable ut

* Implement  download_root suggestion

* Use cache_dir=download_root
2023-04-26 16:35:18 +02:00
Guillaume Klein
67cce3f552 Bump version to 0.5.0 2023-04-25 17:00:41 +02:00
Guillaume Klein
8340e04dc6 Assign words to the speech chunk with the greatest coverage (#180) 2023-04-25 15:54:31 +02:00
Guillaume Klein
8cf5d5a4b3 Increase the default value of speech_pad_ms to 400 ms (#179) 2023-04-25 15:54:22 +02:00
Guillaume Klein
32dc625f11 Update README.md 2023-04-25 15:47:38 +02:00
Guillaume Klein
e06511f96b Rename AudioInfo to TranscriptionInfo (#174) 2023-04-24 16:29:17 +02:00
Anthony
338a725ff8 fix where the tokens are reset (#175) 2023-04-24 16:28:47 +02:00
Amar Sood
f893113759 Align segment structure with openai/whisper (#154)
* Align segment structure with openai/whisper

* Update code to apply requested changes

* Move increment below the segment filtering

---------

Co-authored-by: Guillaume Klein <guillaumekln@users.noreply.github.com>
2023-04-24 15:04:42 +02:00
FlippFuzz
2b51a97e61 Add transcription_options to AudioInfo (#170)
* Add transcription_options to AudioInfo

It would be great if we can include the transcription_options in AudioInfo.

My application is only making a few changes but leaving the rest as default.
However, I would like to record down all settings (including those that I did not specify) so that the audio can be transcribed again identically in future if need be.

* Make TranscriptionOptions appear before AudioInfo

* Remove unnecessary whitespace
2023-04-24 15:02:19 +02:00
Jordi Mas
358d373691 Allow specifying local_files_only to prevent checking the Internet everytime (#166) 2023-04-20 14:26:06 +02:00
17 changed files with 1026 additions and 216 deletions

31
CONTRIBUTING.md Normal file
View File

@@ -0,0 +1,31 @@
# Contributing to faster-whisper
Contributions are welcome! Here are some pointers to help you install the library for development and validate your changes before submitting a pull request.
## Install the library for development
We recommend installing the module in editable mode with the `dev` extra requirements:
```bash
git clone https://github.com/SYSTRAN/faster-whisper.git
cd faster-whisper/
pip install -e .[dev]
```
## Validate the changes before creating a pull request
1. Make sure the existing tests are still passing (and consider adding new tests as well!):
```bash
pytest tests/
```
2. Reformat and validate the code with the following tools:
```bash
black .
isort .
flake8 .
```
These steps are also run automatically in the CI when you open the pull request.

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023 Guillaume Klein
Copyright (c) 2023 SYSTRAN
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -1 +1,3 @@
include faster_whisper/assets/silero_vad.onnx
include requirements.txt
include requirements.conversion.txt

181
README.md
View File

@@ -1,4 +1,4 @@
[![CI](https://github.com/guillaumekln/faster-whisper/workflows/CI/badge.svg)](https://github.com/guillaumekln/faster-whisper/actions?query=workflow%3ACI) [![PyPI version](https://badge.fury.io/py/faster-whisper.svg)](https://badge.fury.io/py/faster-whisper)
[![CI](https://github.com/SYSTRAN/faster-whisper/workflows/CI/badge.svg)](https://github.com/SYSTRAN/faster-whisper/actions?query=workflow%3ACI) [![PyPI version](https://badge.fury.io/py/faster-whisper.svg)](https://badge.fury.io/py/faster-whisper)
# Faster Whisper transcription with CTranslate2
@@ -8,11 +8,13 @@ This implementation is up to 4 times faster than [openai/whisper](https://github
## Benchmark
### Whisper
For reference, here's the time and memory usage that are required to transcribe [**13 minutes**](https://www.youtube.com/watch?v=0u7tTptBo9I) of audio using different implementations:
* [openai/whisper](https://github.com/openai/whisper)@[6dea21fd](https://github.com/openai/whisper/commit/6dea21fd7f7253bfe450f1e2512a0fe47ee2d258)
* [whisper.cpp](https://github.com/ggerganov/whisper.cpp)@[3b010f9](https://github.com/ggerganov/whisper.cpp/commit/3b010f9bed9a6068609e9faf52383aea792b0362)
* [faster-whisper](https://github.com/guillaumekln/faster-whisper)@[cce6b53e](https://github.com/guillaumekln/faster-whisper/commit/cce6b53e4554f71172dad188c45f10fb100f6e3e)
* [faster-whisper](https://github.com/SYSTRAN/faster-whisper)@[cce6b53e](https://github.com/SYSTRAN/faster-whisper/commit/cce6b53e4554f71172dad188c45f10fb100f6e3e)
### Large-v2 model on GPU
@@ -36,6 +38,71 @@ For reference, here's the time and memory usage that are required to transcribe
*Executed with 8 threads on a Intel(R) Xeon(R) Gold 6226R.*
### Distil-whisper
| Implementation | Precision | Beam size | Time | Gigaspeech WER |
| --- | --- | --- | --- | --- |
| distil-whisper/distil-large-v2 | fp16 | 4 |- | 10.36 |
| [faster-distil-large-v2](https://huggingface.co/Systran/faster-distil-whisper-large-v2) | fp16 | 5 | - | 10.28 |
| distil-whisper/distil-medium.en | fp16 | 4 | - | 11.21 |
| [faster-distil-medium.en](https://huggingface.co/Systran/faster-distil-whisper-medium.en) | fp16 | 5 | - | 11.21 |
*Executed with CUDA 11.4 on a NVIDIA 3090.*
<details>
<summary>testing details (click to expand)</summary>
For `distil-whisper/distil-large-v2`, the WER is tested with code sample from [link](https://huggingface.co/distil-whisper/distil-large-v2#evaluation). for `faster-distil-whisper`, the WER is tested with setting:
```python
from faster_whisper import WhisperModel
model_size = "distil-large-v2"
# model_size = "distil-medium.en"
# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en")
```
</details>
## Requirements
* Python 3.8 or greater
Unlike openai-whisper, FFmpeg does **not** need to be installed on the system. The audio is decoded with the Python library [PyAV](https://github.com/PyAV-Org/PyAV) which bundles the FFmpeg libraries in its package.
### GPU
GPU execution requires the following NVIDIA libraries to be installed:
* [cuBLAS for CUDA 11](https://developer.nvidia.com/cublas)
* [cuDNN 8 for CUDA 11](https://developer.nvidia.com/cudnn)
There are multiple ways to install these libraries. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.
<details>
<summary>Other installation methods (click to expand)</summary>
#### Use Docker
The libraries are installed in this official NVIDIA Docker image: `nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04`.
#### Install with `pip` (Linux only)
On Linux these libraries can be installed with `pip`. Note that `LD_LIBRARY_PATH` must be set before launching Python.
```bash
pip install nvidia-cublas-cu11 nvidia-cudnn-cu11
export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
```
#### Download the libraries from Purfview's repository (Windows & Linux)
Purfview's [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) provides the required NVIDIA libraries for Windows & Linux in a [single archive](https://github.com/Purfview/whisper-standalone-win/releases/tag/libs). Decompress the archive and place the libraries in a directory included in the `PATH`.
</details>
## Installation
The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/):
@@ -44,32 +111,31 @@ The module can be installed from [PyPI](https://pypi.org/project/faster-whisper/
pip install faster-whisper
```
**Other installation methods:**
<details>
<summary>Other installation methods (click to expand)</summary>
### Install the master branch
```bash
# Install the master branch:
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/refs/heads/master.tar.gz"
# Install a specific commit:
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
# Install for development:
git clone https://github.com/guillaumekln/faster-whisper.git
pip install -e faster-whisper/
pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/refs/heads/master.tar.gz"
```
### GPU support
### Install a specific commit
GPU execution requires the NVIDIA libraries cuBLAS 11.x and cuDNN 8.x to be installed on the system. Please refer to the [CTranslate2 documentation](https://opennmt.net/CTranslate2/installation.html).
```bash
pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
```
</details>
## Usage
### Library
### Faster-whisper
```python
from faster_whisper import WhisperModel
model_size = "large-v2"
model_size = "large-v3"
# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")
@@ -93,8 +159,27 @@ for segment in segments:
segments, _ = model.transcribe("audio.mp3")
segments = list(segments) # The transcription will actually run here.
```
### Faster Distil-Whisper
#### Word-level timestamps
The Distil-Whisper checkpoints are compatible with the Faster-Whisper package. In particular, the latest [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)
checkpoint is intrinsically designed to work with the Faster-Whisper transcription algorithm. The following code snippet
demonstrates how to run inference with distil-large-v3 on a specified audio file:
```python
from faster_whisper import WhisperModel
model_size = "distil-large-v3"
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en", condition_on_previous_text=False)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```
For more information about the distil-large-v3 model, refer to the original [model card](https://huggingface.co/distil-whisper/distil-large-v3).
### Word-level timestamps
```python
segments, _ = model.transcribe("audio.mp3", word_timestamps=True)
@@ -104,7 +189,7 @@ for segment in segments:
print("[%.2fs -> %.2fs] %s" % (word.start, word.end, word.word))
```
#### VAD filter
### VAD filter
The library integrates the [Silero VAD](https://github.com/snakers4/silero-vad) model to filter out parts of the audio without speech:
@@ -112,33 +197,61 @@ The library integrates the [Silero VAD](https://github.com/snakers4/silero-vad)
segments, _ = model.transcribe("audio.mp3", vad_filter=True)
```
The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the function [`get_speech_timestamps`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:
The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the [source code](https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:
```python
segments, _ = model.transcribe("audio.mp3", vad_filter=True, vad_parameters=dict(min_silence_duration_ms=500))
segments, _ = model.transcribe(
"audio.mp3",
vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=500),
)
```
#### Going further
### Logging
See more model and transcription options in the [`WhisperModel`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.
The library logging level can be configured like this:
### CLI
```python
import logging
You can use [jordimas/whisper-ctranslate2](https://github.com/jordimas/whisper-ctranslate2) to access `faster-whisper` through a CLI interface similar to what is offered by Whisper.
logging.basicConfig()
logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
```
### Going further
See more model and transcription options in the [`WhisperModel`](https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.
## Community integrations
Here is a non exhaustive list of open-source projects using faster-whisper. Feel free to add your project to the list!
* [WhisperX](https://github.com/m-bain/whisperX) is an award-winning Python library that offers speaker diarization and accurate word-level timestamps using wav2vec2 alignment
* [whisper-ctranslate2](https://github.com/Softcatala/whisper-ctranslate2) is a command line client based on faster-whisper and compatible with the original client from openai/whisper.
* [whisper-diarize](https://github.com/MahmoudAshraf97/whisper-diarization) is a speaker diarization tool that is based on faster-whisper and NVIDIA NeMo.
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) Standalone CLI executables of faster-whisper for Windows, Linux & macOS.
* [asr-sd-pipeline](https://github.com/hedrergudene/asr-sd-pipeline) provides a scalable, modular, end to end multi-speaker speech to text solution implemented using AzureML pipelines.
* [Open-Lyrics](https://github.com/zh-plus/Open-Lyrics) is a Python library that transcribes voice files using faster-whisper, and translates/polishes the resulting text into `.lrc` files in the desired language using OpenAI-GPT.
* [wscribe](https://github.com/geekodour/wscribe) is a flexible transcript generation tool supporting faster-whisper, it can export word level transcript and the exported transcript then can be edited with [wscribe-editor](https://github.com/geekodour/wscribe-editor)
* [aTrain](https://github.com/BANDAS-Center/aTrain) is a graphical user interface implementation of faster-whisper developed at the BANDAS-Center at the University of Graz for transcription and diarization in Windows ([Windows Store App](https://apps.microsoft.com/detail/atrain/9N15Q44SZNS2)) and Linux.
* [Whisper-Streaming](https://github.com/ufal/whisper_streaming) implements real-time mode for offline Whisper-like speech-to-text models with faster-whisper as the most recommended back-end. It implements a streaming policy with self-adaptive latency based on the actual source complexity, and demonstrates the state of the art.
* [WhisperLive](https://github.com/collabora/WhisperLive) is a nearly-live implementation of OpenAI's Whisper which uses faster-whisper as the backend to transcribe audio in real-time.
* [Faster-Whisper-Transcriber](https://github.com/BBC-Esq/ctranslate2-faster-whisper-transcriber) is a simple but reliable voice transcriber that provides a user-friendly interface.
## Model conversion
When loading a model from its size such as `WhisperModel("large-v2")`, the correspondig CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/guillaumekln).
When loading a model from its size such as `WhisperModel("large-v3")`, the corresponding CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/Systran).
We also provide a script to convert any Whisper models compatible with the Transformers library. They could be the original OpenAI models or user fine-tuned models.
For example the command below converts the [original "large-v2" Whisper model](https://huggingface.co/openai/whisper-large-v2) and saves the weights in FP16:
For example the command below converts the [original "large-v3" Whisper model](https://huggingface.co/openai/whisper-large-v3) and saves the weights in FP16:
```bash
pip install transformers[torch]>=4.23
ct2-transformers-converter --model openai/whisper-large-v2 --output_dir whisper-large-v2-ct2 \
--copy_files tokenizer.json --quantization float16
ct2-transformers-converter --model openai/whisper-large-v3 --output_dir whisper-large-v3-ct2
--copy_files tokenizer.json preprocessor_config.json --quantization float16
```
* The option `--model` accepts a model name on the Hub or a path to a model directory.
@@ -146,6 +259,18 @@ ct2-transformers-converter --model openai/whisper-large-v2 --output_dir whisper-
Models can also be converted from the code. See the [conversion API](https://opennmt.net/CTranslate2/python/ctranslate2.converters.TransformersConverter.html).
### Load a converted model
1. Directly load the model from a local directory:
```python
model = faster_whisper.WhisperModel("whisper-large-v3-ct2")
```
2. [Upload your model to the Hugging Face Hub](https://huggingface.co/docs/transformers/model_sharing#upload-with-the-web-interface) and load it from its name:
```python
model = faster_whisper.WhisperModel("username/whisper-large-v3-ct2")
```
## Comparing performance against other implementations
If you are comparing the performance against other Whisper implementations, you should make sure to run the comparison with similar settings. In particular:

View File

@@ -1,10 +1,13 @@
from faster_whisper.audio import decode_audio
from faster_whisper.transcribe import WhisperModel
from faster_whisper.utils import download_model, format_timestamp
from faster_whisper.utils import available_models, download_model, format_timestamp
from faster_whisper.version import __version__
__all__ = [
"available_models",
"decode_audio",
"WhisperModel",
"download_model",
"format_timestamp",
"__version__",
]

View File

View File

@@ -6,6 +6,7 @@ system dependencies. FFmpeg does not need to be installed on the system.
However, the API is quite low-level so we need to manipulate audio frames directly.
"""
import gc
import io
import itertools
@@ -42,7 +43,7 @@ def decode_audio(
raw_buffer = io.BytesIO()
dtype = None
with av.open(input_file, metadata_errors="ignore") as container:
with av.open(input_file, mode="r", metadata_errors="ignore") as container:
frames = container.decode(audio=0)
frames = _ignore_invalid_frames(frames)
frames = _group_frames(frames, 500000)
@@ -53,6 +54,11 @@ def decode_audio(
dtype = array.dtype
raw_buffer.write(array)
# It appears that some objects related to the resampler are not freed
# unless the garbage collector is manually run.
del resampler
gc.collect()
audio = np.frombuffer(raw_buffer.getbuffer(), dtype=dtype)
# Convert s16 back to f32.
@@ -96,3 +102,18 @@ def _resample_frames(frames, resampler):
# Add None to flush the resampler.
for frame in itertools.chain(frames, [None]):
yield from resampler.resample(frame)
def pad_or_trim(array, length: int, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
"""
if array.shape[axis] > length:
array = array.take(indices=range(length), axis=axis)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = np.pad(array, pad_widths)
return array

View File

@@ -142,11 +142,15 @@ class FeatureExtractor:
data[f] = np.fft.fft(fft_signal, axis=0)[:num_fft_bins]
return data.T
def __call__(self, waveform, padding=True):
def __call__(self, waveform, padding=True, chunk_length=None):
"""
Compute the log-Mel spectrogram of the provided audio, gives similar results
whisper's original torch implementation with 1e-5 tolerance.
"""
if chunk_length is not None:
self.n_samples = chunk_length * self.sampling_rate
self.nb_max_frames = self.n_samples // self.hop_length
if padding:
waveform = np.pad(waveform, [(0, self.n_samples)])

View File

@@ -19,15 +19,21 @@ class Tokenizer:
self.tokenizer = tokenizer
if multilingual:
if task not in _TASKS:
raise ValueError(
"'%s' is not a valid task (accepted tasks: %s)"
% (task, ", ".join(_TASKS))
)
if language not in _LANGUAGE_CODES:
raise ValueError(
"'%s' is not a valid language code (accepted language codes: %s)"
% (language, ", ".join(_LANGUAGE_CODES))
)
self.task = self.tokenizer.token_to_id("<|%s|>" % task)
if self.task is None:
raise ValueError("%s is not a valid task" % task)
self.language_code = language
self.language = self.tokenizer.token_to_id("<|%s|>" % language)
if self.language is None:
raise ValueError("%s is not a valid language code" % language)
self.language_code = language
else:
self.task = None
self.language = None
@@ -102,7 +108,7 @@ class Tokenizer:
def split_to_word_tokens(
self, tokens: List[int]
) -> Tuple[List[str], List[List[int]]]:
if self.language_code in {"zh", "ja", "th", "lo", "my"}:
if self.language_code in {"zh", "ja", "th", "lo", "my", "yue"}:
# These languages don't typically use spaces, so it is difficult to split words
# without morpheme analysis. Here, we instead split words at any
# position where the tokens are decoded as valid unicode points
@@ -161,3 +167,112 @@ class Tokenizer:
word_tokens[-1].extend(subword_tokens)
return words, word_tokens
_TASKS = (
"transcribe",
"translate",
)
_LANGUAGE_CODES = (
"af",
"am",
"ar",
"as",
"az",
"ba",
"be",
"bg",
"bn",
"bo",
"br",
"bs",
"ca",
"cs",
"cy",
"da",
"de",
"el",
"en",
"es",
"et",
"eu",
"fa",
"fi",
"fo",
"fr",
"gl",
"gu",
"ha",
"haw",
"he",
"hi",
"hr",
"ht",
"hu",
"hy",
"id",
"is",
"it",
"ja",
"jw",
"ka",
"kk",
"km",
"kn",
"ko",
"la",
"lb",
"ln",
"lo",
"lt",
"lv",
"mg",
"mi",
"mk",
"ml",
"mn",
"mr",
"ms",
"mt",
"my",
"ne",
"nl",
"nn",
"no",
"oc",
"pa",
"pl",
"ps",
"pt",
"ro",
"ru",
"sa",
"sd",
"si",
"sk",
"sl",
"sn",
"so",
"sq",
"sr",
"su",
"sv",
"sw",
"ta",
"te",
"tg",
"th",
"tk",
"tl",
"tr",
"tt",
"uk",
"ur",
"uz",
"vi",
"yi",
"yo",
"zh",
"yue",
)

View File

@@ -1,20 +1,23 @@
import itertools
import json
import logging
import os
import zlib
from inspect import signature
from typing import BinaryIO, Iterable, List, NamedTuple, Optional, Tuple, Union
import ctranslate2
import numpy as np
import tokenizers
from faster_whisper.audio import decode_audio
from faster_whisper.audio import decode_audio, pad_or_trim
from faster_whisper.feature_extractor import FeatureExtractor
from faster_whisper.tokenizer import Tokenizer
from faster_whisper.utils import download_model, format_timestamp, get_logger
from faster_whisper.tokenizer import _LANGUAGE_CODES, Tokenizer
from faster_whisper.utils import download_model, format_timestamp, get_end, get_logger
from faster_whisper.vad import (
SpeechTimestampsMap,
VadOptions,
collect_chunks,
get_speech_timestamps,
)
@@ -28,18 +31,17 @@ class Word(NamedTuple):
class Segment(NamedTuple):
id: int
seek: int
start: float
end: float
text: str
words: Optional[List[Word]]
avg_log_prob: float
tokens: List[int]
temperature: float
avg_logprob: float
compression_ratio: float
no_speech_prob: float
class AudioInfo(NamedTuple):
language: str
language_probability: float
duration: float
words: Optional[List[Word]]
class TranscriptionOptions(NamedTuple):
@@ -47,12 +49,15 @@ class TranscriptionOptions(NamedTuple):
best_of: int
patience: float
length_penalty: float
repetition_penalty: float
no_repeat_ngram_size: int
log_prob_threshold: Optional[float]
no_speech_threshold: Optional[float]
compression_ratio_threshold: Optional[float]
condition_on_previous_text: bool
prompt_reset_on_temperature: float
temperatures: List[float]
initial_prompt: Optional[str]
initial_prompt: Optional[Union[str, Iterable[int]]]
prefix: Optional[str]
suppress_blank: bool
suppress_tokens: Optional[List[int]]
@@ -61,6 +66,19 @@ class TranscriptionOptions(NamedTuple):
word_timestamps: bool
prepend_punctuations: str
append_punctuations: str
max_new_tokens: Optional[int]
clip_timestamps: Union[str, List[float]]
hallucination_silence_threshold: Optional[float]
class TranscriptionInfo(NamedTuple):
language: str
language_probability: float
duration: float
duration_after_vad: float
all_language_probs: Optional[List[Tuple[str, float]]]
transcription_options: TranscriptionOptions
vad_options: VadOptions
class WhisperModel:
@@ -73,13 +91,15 @@ class WhisperModel:
cpu_threads: int = 0,
num_workers: int = 1,
download_root: Optional[str] = None,
local_files_only: bool = False,
):
"""Initializes the Whisper model.
Args:
model_size_or_path: Size of the model to use (tiny, tiny.en, base, base.en,
small, small.en, medium, medium.en, large-v1, or large-v2) or a path to a converted
model directory. When a size is configured, the converted model is downloaded
small, small.en, medium, medium.en, large-v1, large-v2, large-v3, or large), a path to a
converted model directory, or a CTranslate2-converted Whisper model ID from the HF Hub.
When a size or a model ID is configured, the converted model is downloaded
from the Hugging Face Hub.
device: Device to use for computation ("cpu", "cuda", "auto").
device_index: Device ID to use.
@@ -94,15 +114,21 @@ class WhisperModel:
having multiple workers enables true parallelism when running the model
(concurrent calls to self.model.generate() will run in parallel).
This can improve the global throughput at the cost of increased memory usage.
download_root: Directory where the model should be saved. If not set, the model
is saved in the standard Hugging Face cache directory.
download_root: Directory where the models should be saved. If not set, the models
are saved in the standard Hugging Face cache directory.
local_files_only: If True, avoid downloading the file and return the path to the
local cached file if it exists.
"""
self.logger = get_logger()
if os.path.isdir(model_size_or_path):
model_path = model_size_or_path
else:
model_path = download_model(model_size_or_path, download_root)
model_path = download_model(
model_size_or_path,
local_files_only=local_files_only,
cache_dir=download_root,
)
self.model = ctranslate2.models.Whisper(
model_path,
@@ -121,7 +147,8 @@ class WhisperModel:
"openai/whisper-tiny" + ("" if self.model.is_multilingual else ".en")
)
self.feature_extractor = FeatureExtractor()
self.feat_kwargs = self._get_feature_kwargs(model_path)
self.feature_extractor = FeatureExtractor(**self.feat_kwargs)
self.num_samples_per_token = self.feature_extractor.hop_length * 2
self.frames_per_second = (
self.feature_extractor.sampling_rate // self.feature_extractor.hop_length
@@ -133,6 +160,27 @@ class WhisperModel:
self.time_precision = 0.02
self.max_length = 448
@property
def supported_languages(self) -> List[str]:
"""The languages supported by the model."""
return list(_LANGUAGE_CODES) if self.model.is_multilingual else ["en"]
def _get_feature_kwargs(self, model_path) -> dict:
preprocessor_config_file = os.path.join(model_path, "preprocessor_config.json")
config = {}
if os.path.isfile(preprocessor_config_file):
try:
with open(preprocessor_config_file, "r", encoding="utf-8") as json_file:
config = json.load(json_file)
valid_keys = signature(FeatureExtractor.__init__).parameters.keys()
config = {k: v for k, v in config.items() if k in valid_keys}
except json.JSONDecodeError as e:
self.logger.warning(
"Could not load preprocessor_config.json: %s", str(e)
)
return config
def transcribe(
self,
audio: Union[str, BinaryIO, np.ndarray],
@@ -142,6 +190,8 @@ class WhisperModel:
best_of: int = 5,
patience: float = 1,
length_penalty: float = 1,
repetition_penalty: float = 1,
no_repeat_ngram_size: int = 0,
temperature: Union[float, List[float], Tuple[float, ...]] = [
0.0,
0.2,
@@ -154,7 +204,8 @@ class WhisperModel:
log_prob_threshold: Optional[float] = -1.0,
no_speech_threshold: Optional[float] = 0.6,
condition_on_previous_text: bool = True,
initial_prompt: Optional[str] = None,
prompt_reset_on_temperature: float = 0.5,
initial_prompt: Optional[Union[str, Iterable[int]]] = None,
prefix: Optional[str] = None,
suppress_blank: bool = True,
suppress_tokens: Optional[List[int]] = [-1],
@@ -164,8 +215,14 @@ class WhisperModel:
prepend_punctuations: str = "\"'“¿([{-",
append_punctuations: str = "\"'.。,!?::”)]}、",
vad_filter: bool = False,
vad_parameters: Optional[dict] = None,
) -> Tuple[Iterable[Segment], AudioInfo]:
vad_parameters: Optional[Union[dict, VadOptions]] = None,
max_new_tokens: Optional[int] = None,
chunk_length: Optional[int] = None,
clip_timestamps: Union[str, List[float]] = "0",
hallucination_silence_threshold: Optional[float] = None,
language_detection_threshold: Optional[float] = None,
language_detection_segments: int = 1,
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
"""Transcribes an input file.
Arguments:
@@ -178,6 +235,9 @@ class WhisperModel:
best_of: Number of candidates when sampling with non-zero temperature.
patience: Beam search patience factor.
length_penalty: Exponential length penalty constant.
repetition_penalty: Penalty applied to the score of previously generated tokens
(set > 1 to penalize).
no_repeat_ngram_size: Prevent repetitions of ngrams with this size (set 0 to disable).
temperature: Temperature for sampling. It can be a tuple of temperatures,
which will be successively used upon failures according to either
`compression_ratio_threshold` or `log_prob_threshold`.
@@ -192,7 +252,10 @@ class WhisperModel:
as a prompt for the next window; disabling may make the text inconsistent across
windows, but the model becomes less prone to getting stuck in a failure loop,
such as repetition looping or timestamps going out of sync.
initial_prompt: Optional text to provide as a prompt for the first window.
prompt_reset_on_temperature: Resets prompt if temperature is above this value.
Arg has effect only if condition_on_previous_text is True.
initial_prompt: Optional text string or iterable of token ids to provide as a
prompt for the first window.
prefix: Optional text to provide as a prefix for the first window.
suppress_blank: Suppress blank outputs at the beginning of the sampling.
suppress_tokens: List of token IDs to suppress. -1 will suppress a default set
@@ -208,14 +271,28 @@ class WhisperModel:
vad_filter: Enable the voice activity detection (VAD) to filter out parts of the audio
without speech. This step is using the Silero VAD model
https://github.com/snakers4/silero-vad.
vad_parameters: Dictionary of Silero VAD parameters (see available parameters and
default values in the function `get_speech_timestamps`).
vad_parameters: Dictionary of Silero VAD parameters or VadOptions class (see available
parameters and default values in the class `VadOptions`).
max_new_tokens: Maximum number of new tokens to generate per-chunk. If not set,
the maximum will be set by the default max_length.
chunk_length: The length of audio segments. If it is not None, it will overwrite the
default chunk_length of the FeatureExtractor.
clip_timestamps: Union[str, List[float]]
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to
process. The last end timestamp defaults to the end of the file.
vad_filter will be ignored if clip_timestamps is used.
hallucination_silence_threshold: Optional[float]
When word_timestamps is True, skip silent periods longer than this threshold
(in seconds) when a possible hallucination is detected
language_detection_threshold: If the maximum probability of the language tokens is higher
than this value, the language is detected.
language_detection_segments: Number of segments to consider for the language detection.
Returns:
A tuple with:
- a generator over transcribed segments
- an instance of AudioInfo
- an instance of TranscriptionInfo
"""
sampling_rate = self.feature_extractor.sampling_rate
@@ -223,19 +300,24 @@ class WhisperModel:
audio = decode_audio(audio, sampling_rate=sampling_rate)
duration = audio.shape[0] / sampling_rate
duration_after_vad = duration
self.logger.info(
"Processing audio with duration %s", format_timestamp(duration)
)
if vad_filter:
vad_parameters = {} if vad_parameters is None else vad_parameters
speech_chunks = get_speech_timestamps(audio, **vad_parameters)
if vad_filter and clip_timestamps == "0":
if vad_parameters is None:
vad_parameters = VadOptions()
elif isinstance(vad_parameters, dict):
vad_parameters = VadOptions(**vad_parameters)
speech_chunks = get_speech_timestamps(audio, vad_parameters)
audio = collect_chunks(audio, speech_chunks)
duration_after_vad = audio.shape[0] / sampling_rate
self.logger.info(
"VAD filter removed %s of audio",
format_timestamp(duration - (audio.shape[0] / sampling_rate)),
format_timestamp(duration - duration_after_vad),
)
if self.logger.isEnabledFor(logging.DEBUG):
@@ -254,20 +336,61 @@ class WhisperModel:
else:
speech_chunks = None
features = self.feature_extractor(audio)
features = self.feature_extractor(audio, chunk_length=chunk_length)
encoder_output = None
all_language_probs = None
if language is None:
if not self.model.is_multilingual:
language = "en"
language_probability = 1
else:
segment = features[:, : self.feature_extractor.nb_max_frames]
encoder_output = self.encode(segment)
results = self.model.detect_language(encoder_output)
language_token, language_probability = results[0][0]
language = language_token[2:-2]
if (
language_detection_segments is None
or language_detection_segments < 1
):
language_detection_segments = 1
seek = 0
detected_language_info = {}
content_frames = (
features.shape[-1] - self.feature_extractor.nb_max_frames
)
while (
seek <= content_frames
and seek
< self.feature_extractor.nb_max_frames * language_detection_segments
):
segment = features[
:, seek : seek + self.feature_extractor.nb_max_frames
]
encoder_output = self.encode(segment)
# results is a list of tuple[str, float] with language names and
# probabilities.
results = self.model.detect_language(encoder_output)[0]
# Parse language names to strip out markers
all_language_probs = [
(token[2:-2], prob) for (token, prob) in results
]
# Get top language token and probability
language, language_probability = all_language_probs[0]
if (
language_detection_threshold is None
or language_probability > language_detection_threshold
):
break
detected_language_info.setdefault(language, []).append(
language_probability
)
seek += segment.shape[-1]
else:
# If no language detected for all segments, the majority vote of the highest
# projected languages for all segments is used to determine the language.
language = max(
detected_language_info,
key=lambda lang: len(detected_language_info[lang]),
)
language_probability = max(detected_language_info[language])
self.logger.info(
"Detected language '%s' with probability %.2f",
@@ -275,6 +398,13 @@ class WhisperModel:
language_probability,
)
else:
if not self.model.is_multilingual and language != "en":
self.logger.warning(
"The current model is English-only but the language parameter is set to '%s'; "
"using 'en' instead." % language
)
language = "en"
language_probability = 1
tokenizer = Tokenizer(
@@ -289,10 +419,13 @@ class WhisperModel:
best_of=best_of,
patience=patience,
length_penalty=length_penalty,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=no_repeat_ngram_size,
log_prob_threshold=log_prob_threshold,
no_speech_threshold=no_speech_threshold,
compression_ratio_threshold=compression_ratio_threshold,
condition_on_previous_text=condition_on_previous_text,
prompt_reset_on_temperature=prompt_reset_on_temperature,
temperatures=(
temperature if isinstance(temperature, (list, tuple)) else [temperature]
),
@@ -305,6 +438,9 @@ class WhisperModel:
word_timestamps=word_timestamps,
prepend_punctuations=prepend_punctuations,
append_punctuations=append_punctuations,
max_new_tokens=max_new_tokens,
clip_timestamps=clip_timestamps,
hallucination_silence_threshold=hallucination_silence_threshold,
)
segments = self.generate_segments(features, tokenizer, options, encoder_output)
@@ -312,13 +448,17 @@ class WhisperModel:
if speech_chunks:
segments = restore_speech_timestamps(segments, speech_chunks, sampling_rate)
audio_info = AudioInfo(
info = TranscriptionInfo(
language=language,
language_probability=language_probability,
duration=duration,
duration_after_vad=duration_after_vad,
transcription_options=options,
vad_options=vad_parameters,
all_language_probs=all_language_probs,
)
return segments, audio_info
return segments, info
def generate_segments(
self,
@@ -328,22 +468,73 @@ class WhisperModel:
encoder_output: Optional[ctranslate2.StorageView] = None,
) -> Iterable[Segment]:
content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
seek = 0
content_duration = float(content_frames * self.feature_extractor.time_per_frame)
if isinstance(options.clip_timestamps, str):
TranscriptionOptions.clip_timestamps = [
float(ts)
for ts in (
options.clip_timestamps.split(",")
if options.clip_timestamps
else []
)
]
seek_points: List[int] = [
round(ts * self.frames_per_second) for ts in options.clip_timestamps
]
if len(seek_points) == 0:
seek_points.append(0)
if len(seek_points) % 2 == 1:
seek_points.append(content_frames)
seek_clips: List[Tuple[int, int]] = list(
zip(seek_points[::2], seek_points[1::2])
)
punctuation = "\"'“¿([{-\"'.。,!?::”)]}、"
idx = 0
clip_idx = 0
seek = seek_clips[clip_idx][0]
all_tokens = []
prompt_reset_since = 0
if options.initial_prompt is not None:
initial_prompt = " " + options.initial_prompt.strip()
initial_prompt_tokens = tokenizer.encode(initial_prompt)
all_tokens.extend(initial_prompt_tokens)
if isinstance(options.initial_prompt, str):
initial_prompt = " " + options.initial_prompt.strip()
initial_prompt_tokens = tokenizer.encode(initial_prompt)
all_tokens.extend(initial_prompt_tokens)
else:
all_tokens.extend(options.initial_prompt)
while seek < content_frames:
last_speech_timestamp = 0.0
# NOTE: This loop is obscurely flattened to make the diff readable.
# A later commit should turn this into a simpler nested loop.
# for seek_clip_start, seek_clip_end in seek_clips:
# while seek < seek_clip_end
while clip_idx < len(seek_clips):
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
if seek_clip_end > content_frames:
seek_clip_end = content_frames
if seek < seek_clip_start:
seek = seek_clip_start
if seek >= seek_clip_end:
clip_idx += 1
if clip_idx < len(seek_clips):
seek = seek_clips[clip_idx][0]
continue
time_offset = seek * self.feature_extractor.time_per_frame
segment = features[:, seek : seek + self.feature_extractor.nb_max_frames]
segment_size = min(
self.feature_extractor.nb_max_frames, content_frames - seek
window_end_time = float(
(seek + self.feature_extractor.nb_max_frames)
* self.feature_extractor.time_per_frame
)
segment_size = min(
self.feature_extractor.nb_max_frames,
content_frames - seek,
seek_clip_end - seek,
)
segment = features[:, seek : seek + segment_size]
segment_duration = segment_size * self.feature_extractor.time_per_frame
segment = pad_or_trim(segment, self.feature_extractor.nb_max_frames)
if self.logger.isEnabledFor(logging.DEBUG):
self.logger.debug(
@@ -358,12 +549,15 @@ class WhisperModel:
prefix=options.prefix if seek == 0 else None,
)
if encoder_output is None:
if seek > 0 or encoder_output is None:
encoder_output = self.encode(segment)
result, avg_log_prob, temperature = self.generate_with_fallback(
encoder_output, prompt, tokenizer, options
)
(
result,
avg_logprob,
temperature,
compression_ratio,
) = self.generate_with_fallback(encoder_output, prompt, tokenizer, options)
if options.no_speech_threshold is not None:
# no voice activity check
@@ -371,7 +565,7 @@ class WhisperModel:
if (
options.log_prob_threshold is not None
and avg_log_prob > options.log_prob_threshold
and avg_logprob > options.log_prob_threshold
):
# don't skip if the logprob is high enough, despite the no_speech_prob
should_skip = False
@@ -392,10 +586,33 @@ class WhisperModel:
previous_seek = seek
current_segments = []
# anomalous words are very long/short/improbable
def word_anomaly_score(word: dict) -> float:
probability = word.get("probability", 0.0)
duration = word["end"] - word["start"]
score = 0.0
if probability < 0.15:
score += 1.0
if duration < 0.133:
score += (0.133 - duration) * 15
if duration > 2.0:
score += duration - 2.0
return score
def is_segment_anomaly(segment: Optional[dict]) -> bool:
if segment is None or not segment["words"]:
return False
words = [w for w in segment["words"] if w["word"] not in punctuation]
words = words[:8]
score = sum(word_anomaly_score(w) for w in words)
return score >= 3 or score + 0.01 >= len(words)
def next_words_segment(segments: List[dict]) -> Optional[dict]:
return next((s for s in segments if s["words"]), None)
single_timestamp_ending = (
len(tokens) >= 2
and tokens[-2] < tokenizer.timestamp_begin
and tokens[-1] >= tokenizer.timestamp_begin
and tokens[-2] < tokenizer.timestamp_begin <= tokens[-1]
)
consecutive_timestamps = [
@@ -467,9 +684,6 @@ class WhisperModel:
seek += segment_size
if not options.condition_on_previous_text or temperature > 0.5:
prompt_reset_since = len(all_tokens)
if options.word_timestamps:
self.add_word_timestamps(
current_segments,
@@ -478,21 +692,65 @@ class WhisperModel:
segment_size,
options.prepend_punctuations,
options.append_punctuations,
last_speech_timestamp=last_speech_timestamp,
)
word_end_timestamps = [
w["end"] for s in current_segments for w in s["words"]
]
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
seek = round(last_word_end * self.frames_per_second)
if not single_timestamp_ending and len(word_end_timestamps) > 0:
seek_shift = round(
(word_end_timestamps[-1] - time_offset) * self.frames_per_second
)
# skip silence before possible hallucinations
if options.hallucination_silence_threshold is not None:
threshold = options.hallucination_silence_threshold
if seek_shift > 0:
seek = previous_seek + seek_shift
# if first segment might be a hallucination, skip leading silence
first_segment = next_words_segment(current_segments)
if first_segment is not None and is_segment_anomaly(first_segment):
gap = first_segment["start"] - time_offset
if gap > threshold:
seek = previous_seek + round(gap * self.frames_per_second)
continue
encoder_output = None
# skip silence before any possible hallucination that is surrounded
# by silence or more hallucinations
hal_last_end = last_speech_timestamp
for si in range(len(current_segments)):
segment = current_segments[si]
if not segment["words"]:
continue
if is_segment_anomaly(segment):
next_segment = next_words_segment(
current_segments[si + 1 :]
)
if next_segment is not None:
hal_next_start = next_segment["words"][0]["start"]
else:
hal_next_start = time_offset + segment_duration
silence_before = (
segment["start"] - hal_last_end > threshold
or segment["start"] < threshold
or segment["start"] - time_offset < 2.0
)
silence_after = (
hal_next_start - segment["end"] > threshold
or is_segment_anomaly(next_segment)
or window_end_time - segment["end"] < 2.0
)
if silence_before and silence_after:
seek = round(
max(time_offset + 1, segment["start"])
* self.frames_per_second
)
if content_duration - segment["end"] < threshold:
seek = content_frames
current_segments[si:] = []
break
hal_last_end = segment["end"]
last_word_end = get_end(current_segments)
if last_word_end is not None:
last_speech_timestamp = last_word_end
for segment in current_segments:
tokens = segment["tokens"]
@@ -502,20 +760,39 @@ class WhisperModel:
continue
all_tokens.extend(tokens)
idx += 1
yield Segment(
id=idx,
seek=seek,
start=segment["start"],
end=segment["end"],
text=text,
tokens=tokens,
temperature=temperature,
avg_logprob=avg_logprob,
compression_ratio=compression_ratio,
no_speech_prob=result.no_speech_prob,
words=(
[Word(**word) for word in segment["words"]]
if options.word_timestamps
else None
),
avg_log_prob=avg_log_prob,
no_speech_prob=result.no_speech_prob,
)
if (
not options.condition_on_previous_text
or temperature > options.prompt_reset_on_temperature
):
if options.condition_on_previous_text:
self.logger.debug(
"Reset prompt. prompt_reset_on_temperature threshold is met %f > %f",
temperature,
options.prompt_reset_on_temperature,
)
prompt_reset_since = len(all_tokens)
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
# When the model is running on multiple GPUs, the encoder output should be moved
# to the CPU since we don't know which GPU will handle the next job.
@@ -532,14 +809,29 @@ class WhisperModel:
prompt: List[int],
tokenizer: Tokenizer,
options: TranscriptionOptions,
) -> Tuple[ctranslate2.models.WhisperGenerationResult, float, float]:
result = None
avg_log_prob = None
final_temperature = None
) -> Tuple[ctranslate2.models.WhisperGenerationResult, float, float, float]:
decode_result = None
all_results = []
below_cr_threshold_results = []
max_initial_timestamp_index = int(
round(options.max_initial_timestamp / self.time_precision)
)
if options.max_new_tokens is not None:
max_length = len(prompt) + options.max_new_tokens
else:
max_length = self.max_length
if max_length > self.max_length:
raise ValueError(
f"The length of the prompt is {len(prompt)}, and the `max_new_tokens` "
f"{max_length - len(prompt)}. Thus, the combined length of the prompt "
f"and `max_new_tokens` is: {max_length}. This exceeds the "
f"`max_length` of the Whisper model: {self.max_length}. "
"You should either reduce the length of your prompt, or "
"reduce the value of `max_new_tokens`, "
f"so that their combined length is less that {self.max_length}."
)
for temperature in options.temperatures:
if temperature > 0:
@@ -555,12 +847,13 @@ class WhisperModel:
"patience": options.patience,
}
final_temperature = temperature
result = self.model.generate(
encoder_output,
[prompt],
length_penalty=options.length_penalty,
max_length=self.max_length,
repetition_penalty=options.repetition_penalty,
no_repeat_ngram_size=options.no_repeat_ngram_size,
max_length=max_length,
return_scores=True,
return_no_speech_prob=True,
suppress_blank=options.suppress_blank,
@@ -573,44 +866,72 @@ class WhisperModel:
# Recover the average log prob from the returned score.
seq_len = len(tokens)
cum_log_prob = result.scores[0] * (seq_len**options.length_penalty)
avg_log_prob = cum_log_prob / (seq_len + 1)
cum_logprob = result.scores[0] * (seq_len**options.length_penalty)
avg_logprob = cum_logprob / (seq_len + 1)
text = tokenizer.decode(tokens).strip()
compression_ratio = get_compression_ratio(text)
decode_result = (
result,
avg_logprob,
temperature,
compression_ratio,
)
all_results.append(decode_result)
needs_fallback = False
if (
options.compression_ratio_threshold is not None
and compression_ratio > options.compression_ratio_threshold
):
needs_fallback = True # too repetitive
if options.compression_ratio_threshold is not None:
if compression_ratio > options.compression_ratio_threshold:
needs_fallback = True # too repetitive
self.logger.debug(
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
temperature,
compression_ratio,
options.compression_ratio_threshold,
)
self.logger.debug(
"Compression ratio threshold is not met with temperature %.1f (%f > %f)",
temperature,
compression_ratio,
options.compression_ratio_threshold,
)
else:
below_cr_threshold_results.append(decode_result)
if (
options.log_prob_threshold is not None
and avg_log_prob < options.log_prob_threshold
and avg_logprob < options.log_prob_threshold
):
needs_fallback = True # average log probability is too low
self.logger.debug(
"Log probability threshold is not met with temperature %.1f (%f < %f)",
temperature,
avg_log_prob,
avg_logprob,
options.log_prob_threshold,
)
if (
options.no_speech_threshold is not None
and result.no_speech_prob > options.no_speech_threshold
and options.log_prob_threshold is not None
and avg_logprob < options.log_prob_threshold
):
needs_fallback = False # silence
if not needs_fallback:
break
else:
# all failed, select the result with the highest average log probability
decode_result = max(
below_cr_threshold_results or all_results, key=lambda x: x[1]
)
# to pass final temperature for prompt_reset_on_temperature
decode_result = (
decode_result[0],
decode_result[1],
temperature,
decode_result[3],
)
return result, avg_log_prob, final_temperature
return decode_result
def get_prompt(
self,
@@ -634,6 +955,8 @@ class WhisperModel:
prefix_tokens = tokenizer.encode(" " + prefix.strip())
if len(prefix_tokens) >= self.max_length // 2:
prefix_tokens = prefix_tokens[: self.max_length // 2 - 1]
if not without_timestamps:
prompt.append(tokenizer.timestamp_begin)
prompt.extend(prefix_tokens)
return prompt
@@ -646,7 +969,8 @@ class WhisperModel:
num_frames: int,
prepend_punctuations: str,
append_punctuations: str,
):
last_speech_timestamp: float,
) -> None:
if len(segments) == 0:
return
@@ -659,6 +983,25 @@ class WhisperModel:
alignment = self.find_alignment(
tokenizer, text_tokens, encoder_output, num_frames
)
word_durations = np.array([word["end"] - word["start"] for word in alignment])
word_durations = word_durations[word_durations.nonzero()]
median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
median_duration = min(0.7, float(median_duration))
max_duration = median_duration * 2
# hack: truncate long words at sentence boundaries.
# a better segmentation algorithm based on VAD should be able to replace this.
if len(word_durations) > 0:
sentence_end_marks = ".。!?"
# ensure words at sentence boundaries
# are not longer than twice the median word duration.
for i in range(1, len(alignment)):
if alignment[i]["end"] - alignment[i]["start"] > max_duration:
if alignment[i]["word"] in sentence_end_marks:
alignment[i]["end"] = alignment[i]["start"] + max_duration
elif alignment[i - 1]["word"] in sentence_end_marks:
alignment[i]["start"] = alignment[i]["end"] - max_duration
merge_punctuations(alignment, prepend_punctuations, append_punctuations)
time_offset = (
@@ -689,10 +1032,51 @@ class WhisperModel:
saved_tokens += len(timing["tokens"])
word_index += 1
# hack: truncate long words at segment boundaries.
# a better segmentation algorithm based on VAD should be able to replace this.
if len(words) > 0:
# adjust the segment-level timestamps based on the word-level timestamps
segment["start"] = words[0]["start"]
segment["end"] = words[-1]["end"]
# ensure the first and second word after a pause is not longer than
# twice the median word duration.
if words[0]["end"] - last_speech_timestamp > median_duration * 4 and (
words[0]["end"] - words[0]["start"] > max_duration
or (
len(words) > 1
and words[1]["end"] - words[0]["start"] > max_duration * 2
)
):
if (
len(words) > 1
and words[1]["end"] - words[1]["start"] > max_duration
):
boundary = max(
words[1]["end"] / 2, words[1]["end"] - max_duration
)
words[0]["end"] = words[1]["start"] = boundary
words[0]["start"] = max(0, words[0]["end"] - max_duration)
# prefer the segment-level start timestamp if the first word is too long.
if (
segment["start"] < words[0]["end"]
and segment["start"] - 0.5 > words[0]["start"]
):
words[0]["start"] = max(
0, min(words[0]["end"] - median_duration, segment["start"])
)
else:
segment["start"] = words[0]["start"]
# prefer the segment-level end timestamp if the last word is too long.
if (
segment["end"] > words[-1]["start"]
and segment["end"] + 0.5 < words[-1]["end"]
):
words[-1]["end"] = max(
words[-1]["start"] + median_duration, segment["end"]
)
else:
segment["end"] = words[-1]["end"]
last_speech_timestamp = segment["end"]
segment["words"] = words
@@ -724,7 +1108,16 @@ class WhisperModel:
words, word_tokens = tokenizer.split_to_word_tokens(
text_tokens + [tokenizer.eot]
)
if len(word_tokens) <= 1:
# return on eot only
# >>> np.pad([], (1, 0))
# array([0.])
# This results in crashes when we lookup jump_times with float, like
# IndexError: arrays used as indices must be of integer (or boolean) type
return []
word_boundaries = np.pad(np.cumsum([len(t) for t in word_tokens[:-1]]), (1, 0))
if len(word_boundaries) <= 1:
return []
jumps = np.pad(np.diff(text_indices), (1, 0), constant_values=1).astype(bool)
jump_times = time_indices[jumps] / self.tokens_per_second
@@ -735,22 +1128,6 @@ class WhisperModel:
for i, j in zip(word_boundaries[:-1], word_boundaries[1:])
]
# hack: ensure the first and second word is not longer than twice the median word duration.
# a better segmentation algorithm based on VAD should be able to replace this.
word_durations = end_times - start_times
word_durations = word_durations[word_durations.nonzero()]
if len(word_durations) > 0:
median_duration = np.median(word_durations)
max_duration = median_duration * 2
if len(word_durations) >= 2 and word_durations[1] > max_duration:
boundary = max(end_times[2] / 2, end_times[2] - max_duration)
end_times[0] = start_times[1] = boundary
if (
len(word_durations) >= 1
and end_times[0] - start_times[0] > max_duration
):
start_times[0] = max(0, end_times[0] - max_duration)
return [
dict(
word=word, tokens=tokens, start=start, end=end, probability=probability
@@ -773,7 +1150,8 @@ def restore_speech_timestamps(
words = []
for word in segment.words:
# Ensure the word start and end times are resolved to the same chunk.
chunk_index = ts_map.get_chunk_index(word.start)
middle = (word.start + word.end) / 2
chunk_index = ts_map.get_chunk_index(middle)
word = word._replace(
start=ts_map.get_original_time(word.start, chunk_index),
end=ts_map.get_original_time(word.end, chunk_index),
@@ -806,7 +1184,10 @@ def get_compression_ratio(text: str) -> float:
return len(text_bytes) / len(zlib.compress(text_bytes))
def get_suppressed_tokens(tokenizer, suppress_tokens):
def get_suppressed_tokens(
tokenizer: Tokenizer,
suppress_tokens: Optional[List[int]],
) -> Optional[List[int]]:
if not suppress_tokens or -1 in suppress_tokens:
return suppress_tokens
@@ -827,7 +1208,7 @@ def get_suppressed_tokens(tokenizer, suppress_tokens):
return sorted(set(suppress_tokens))
def merge_punctuations(alignment: List[dict], prepended: str, appended: str):
def merge_punctuations(alignment: List[dict], prepended: str, appended: str) -> None:
# merge prepended punctuations
i = len(alignment) - 2
j = len(alignment) - 1

View File

@@ -1,24 +1,37 @@
import logging
import os
import re
from typing import Optional
from typing import List, Optional
import huggingface_hub
import requests
from tqdm.auto import tqdm
_MODELS = (
"tiny.en",
"tiny",
"base.en",
"base",
"small.en",
"small",
"medium.en",
"medium",
"large-v1",
"large-v2",
)
_MODELS = {
"tiny.en": "Systran/faster-whisper-tiny.en",
"tiny": "Systran/faster-whisper-tiny",
"base.en": "Systran/faster-whisper-base.en",
"base": "Systran/faster-whisper-base",
"small.en": "Systran/faster-whisper-small.en",
"small": "Systran/faster-whisper-small",
"medium.en": "Systran/faster-whisper-medium.en",
"medium": "Systran/faster-whisper-medium",
"large-v1": "Systran/faster-whisper-large-v1",
"large-v2": "Systran/faster-whisper-large-v2",
"large-v3": "Systran/faster-whisper-large-v3",
"large": "Systran/faster-whisper-large-v3",
"distil-large-v2": "Systran/faster-distil-whisper-large-v2",
"distil-medium.en": "Systran/faster-distil-whisper-medium.en",
"distil-small.en": "Systran/faster-distil-whisper-small.en",
"distil-large-v3": "Systran/faster-distil-whisper-large-v3",
}
def available_models() -> List[str]:
"""Returns the names of available models."""
return list(_MODELS.keys())
def get_assets_path():
@@ -31,16 +44,24 @@ def get_logger():
return logging.getLogger("faster_whisper")
def download_model(size: str, output_dir: Optional[str] = None):
def download_model(
size_or_id: str,
output_dir: Optional[str] = None,
local_files_only: bool = False,
cache_dir: Optional[str] = None,
):
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
The model is downloaded from https://huggingface.co/guillaumekln.
Args:
size: Size of the model to download (tiny, tiny.en, base, base.en, small, small.en,
medium, medium.en, large-v1, or large-v2).
size_or_id: Size of the model to download from https://huggingface.co/Systran
(tiny, tiny.en, base, base.en, small, small.en medium, medium.en, large-v1, large-v2,
large-v3, large), or a CTranslate2-converted model ID from the Hugging Face Hub
(e.g. Systran/faster-whisper-large-v3).
output_dir: Directory where the model should be saved. If not set, the model is saved in
the standard Hugging Face cache directory.
the cache directory.
local_files_only: If True, avoid downloading the file and return the path to the local
cached file if it exists.
cache_dir: Path to the folder where cached files are stored.
Returns:
The path to the downloaded model.
@@ -48,31 +69,55 @@ def download_model(size: str, output_dir: Optional[str] = None):
Raises:
ValueError: if the model size is invalid.
"""
if size not in _MODELS:
raise ValueError(
"Invalid model size '%s', expected one of: %s" % (size, ", ".join(_MODELS))
)
if re.match(r".*/.*", size_or_id):
repo_id = size_or_id
else:
repo_id = _MODELS.get(size_or_id)
if repo_id is None:
raise ValueError(
"Invalid model size '%s', expected one of: %s"
% (size_or_id, ", ".join(_MODELS.keys()))
)
repo_id = "guillaumekln/faster-whisper-%s" % size
kwargs = {}
allow_patterns = [
"config.json",
"preprocessor_config.json",
"model.bin",
"tokenizer.json",
"vocabulary.*",
]
kwargs = {
"local_files_only": local_files_only,
"allow_patterns": allow_patterns,
"tqdm_class": disabled_tqdm,
}
if output_dir is not None:
kwargs["local_dir"] = output_dir
kwargs["local_dir_use_symlinks"] = False
allow_patterns = [
"config.json",
"model.bin",
"tokenizer.json",
"vocabulary.txt",
]
if cache_dir is not None:
kwargs["cache_dir"] = cache_dir
return huggingface_hub.snapshot_download(
repo_id,
allow_patterns=allow_patterns,
tqdm_class=disabled_tqdm,
**kwargs,
)
try:
return huggingface_hub.snapshot_download(repo_id, **kwargs)
except (
huggingface_hub.utils.HfHubHTTPError,
requests.exceptions.ConnectionError,
) as exception:
logger = get_logger()
logger.warning(
"An error occured while synchronizing the model %s from the Hugging Face Hub:\n%s",
repo_id,
exception,
)
logger.warning(
"Trying to load the model directly from the local cache, if it exists."
)
kwargs["local_files_only"] = True
return huggingface_hub.snapshot_download(repo_id, **kwargs)
def format_timestamp(
@@ -102,3 +147,10 @@ class disabled_tqdm(tqdm):
def __init__(self, *args, **kwargs):
kwargs["disable"] = True
super().__init__(*args, **kwargs)
def get_end(segments: List[dict]) -> Optional[float]:
return next(
(w["end"] for s in reversed(segments) for w in reversed(s["words"])),
segments[-1]["end"] if segments else None,
)

View File

@@ -3,47 +3,67 @@ import functools
import os
import warnings
from typing import List, Optional
from typing import List, NamedTuple, Optional
import numpy as np
from faster_whisper.utils import get_assets_path
# The code below is adapted from https://github.com/snakers4/silero-vad.
class VadOptions(NamedTuple):
"""VAD options.
def get_speech_timestamps(
audio: np.ndarray,
*,
threshold: float = 0.5,
min_speech_duration_ms: int = 250,
max_speech_duration_s: float = float("inf"),
min_silence_duration_ms: int = 2000,
window_size_samples: int = 1024,
speech_pad_ms: int = 200,
) -> List[dict]:
"""This method is used for splitting long audios into speech chunks using silero VAD.
Args:
audio: One dimensional float array.
Attributes:
threshold: Speech threshold. Silero VAD outputs speech probabilities for each audio chunk,
probabilities ABOVE this value are considered as SPEECH. It is better to tune this
parameter for each dataset separately, but "lazy" 0.5 is pretty good for most datasets.
min_speech_duration_ms: Final speech chunks shorter min_speech_duration_ms are thrown out.
max_speech_duration_s: Maximum duration of speech chunks in seconds. Chunks longer
than max_speech_duration_s will be split at the timestamp of the last silence that
lasts more than 100s (if any), to prevent agressive cutting. Otherwise, they will be
lasts more than 100ms (if any), to prevent aggressive cutting. Otherwise, they will be
split aggressively just before max_speech_duration_s.
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
before separating it
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
Values other than these may affect model perfomance!!
Values other than these may affect model performance!!
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
"""
threshold: float = 0.5
min_speech_duration_ms: int = 250
max_speech_duration_s: float = float("inf")
min_silence_duration_ms: int = 2000
window_size_samples: int = 1024
speech_pad_ms: int = 400
def get_speech_timestamps(
audio: np.ndarray,
vad_options: Optional[VadOptions] = None,
**kwargs,
) -> List[dict]:
"""This method is used for splitting long audios into speech chunks using silero VAD.
Args:
audio: One dimensional float array.
vad_options: Options for VAD processing.
kwargs: VAD options passed as keyword arguments for backward compatibility.
Returns:
List of dicts containing begin and end samples of each speech chunk.
"""
if vad_options is None:
vad_options = VadOptions(**kwargs)
threshold = vad_options.threshold
min_speech_duration_ms = vad_options.min_speech_duration_ms
max_speech_duration_s = vad_options.max_speech_duration_s
min_silence_duration_ms = vad_options.min_silence_duration_ms
window_size_samples = vad_options.window_size_samples
speech_pad_ms = vad_options.speech_pad_ms
if window_size_samples not in [512, 1024, 1536]:
warnings.warn(
"Unusual window_size_samples! Supported window_size_samples:\n"

View File

@@ -0,0 +1,3 @@
"""Version information."""
__version__ = "1.0.1"

View File

@@ -1,5 +1,5 @@
av==10.*
ctranslate2>=3.10,<4
av==11.*
ctranslate2>=4.0,<5
huggingface_hub>=0.13
tokenizers==0.13.*
onnxruntime==1.14.* ; python_version < "3.11"
tokenizers>=0.13,<0.16
onnxruntime>=1.14,<2

View File

@@ -11,6 +11,14 @@ def get_long_description():
return readme_file.read()
def get_project_version():
version_path = os.path.join(base_dir, "faster_whisper", "version.py")
version = {}
with open(version_path, encoding="utf-8") as fp:
exec(fp.read(), version)
return version["__version__"]
def get_requirements(path):
with open(path, encoding="utf-8") as requirements:
return [requirement.strip() for requirement in requirements]
@@ -23,13 +31,13 @@ conversion_requires = get_requirements(
setup(
name="faster-whisper",
version="0.4.1",
version=get_project_version(),
license="MIT",
description="Faster Whisper transcription with CTranslate2",
long_description=get_long_description(),
long_description_content_type="text/markdown",
author="Guillaume Klein",
url="https://github.com/guillaumekln/faster-whisper",
url="https://github.com/SYSTRAN/faster-whisper",
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",

View File

@@ -3,14 +3,26 @@ import os
from faster_whisper import WhisperModel, decode_audio
def test_supported_languages():
model = WhisperModel("tiny.en")
assert model.supported_languages == ["en"]
def test_transcribe(jfk_path):
model = WhisperModel("tiny")
segments, info = model.transcribe(jfk_path, word_timestamps=True)
assert info.all_language_probs is not None
assert info.language == "en"
assert info.language_probability > 0.9
assert info.duration == 11
# Get top language info from all results, which should match the
# already existing metadata
top_lang, top_lang_score = info.all_language_probs[0]
assert info.language == top_lang
assert abs(info.language_probability - top_lang_score) < 1e-16
segments = list(segments)
assert len(segments) == 1
@@ -27,12 +39,30 @@ def test_transcribe(jfk_path):
assert segment.end == segment.words[-1].end
def test_prefix_with_timestamps(jfk_path):
model = WhisperModel("tiny")
segments, _ = model.transcribe(jfk_path, prefix="And so my fellow Americans")
segments = list(segments)
assert len(segments) == 1
segment = segments[0]
assert segment.text == (
" And so my fellow Americans ask not what your country can do for you, "
"ask what you can do for your country."
)
assert segment.start == 0
assert 10 < segment.end < 11
def test_vad(jfk_path):
model = WhisperModel("tiny")
segments, _ = model.transcribe(
segments, info = model.transcribe(
jfk_path,
vad_filter=True,
vad_parameters=dict(min_silence_duration_ms=500),
vad_parameters=dict(min_silence_duration_ms=500, speech_pad_ms=200),
)
segments = list(segments)
@@ -47,6 +77,9 @@ def test_vad(jfk_path):
assert 0 < segment.start < 1
assert 10 < segment.end < 11
assert info.vad_options.min_silence_duration_ms == 500
assert info.vad_options.speech_pad_ms == 200
def test_stereo_diarization(data_dir):
model = WhisperModel("tiny")

View File

@@ -1,6 +1,12 @@
import os
from faster_whisper import download_model
from faster_whisper import available_models, download_model
def test_available_models():
models = available_models()
assert isinstance(models, list)
assert "tiny" in models
def test_download_model(tmpdir):
@@ -15,3 +21,9 @@ def test_download_model(tmpdir):
for filename in os.listdir(model_dir):
path = os.path.join(model_dir, filename)
assert not os.path.islink(path)
def test_download_model_in_cache(tmpdir):
cache_dir = str(tmpdir.join("model"))
download_model("tiny", cache_dir=cache_dir)
assert os.path.isdir(cache_dir)