Compare commits

..

17 Commits

Author SHA1 Message Date
4b64ef1f70 Merge branch 'master' into prompt 2024-02-23 10:52:53 +08:00
trungkienbkhn
06d32bf0c1 Bump version to 1.0.0 (#696) 2024-02-22 09:49:01 +01:00
Purfview
30d6043e90 Prevent infinite loop for out-of-bound timestamps in clip_timestamps (#697)
Same as https://github.com/openai/whisper/pull/2005
2024-02-22 09:48:35 +01:00
BBC-Esq
22c75d0cc3 Update README.md (#672)
Add Faster-Whisper-Transcriber to community integrations.
2024-02-21 10:18:11 +01:00
trungkienbkhn
092067208b Add clip_timestamps and hallucination_silence_threshold options (#646) 2024-02-20 17:34:54 +01:00
Jordi Mas
6ffcbdfbc2 Fix typos in README.md (#668) 2024-02-20 17:33:17 +01:00
Purfview
52695567c9 Bumps up PyAV version to support Python 3.12.x (#679) 2024-02-20 17:31:07 +01:00
IlianP
c6b28ed3a0 Update README.md (#685)
I'm surprised that WhisperX hasn't made it into this list yet, as it has more stars than faster-whisper itself 🚀
2024-02-20 17:28:00 +01:00
trungkienbkhn
4ab646035f Upgrade ctranslate2 version to support CUDA 12 (#694) 2024-02-20 17:26:55 +01:00
d04e685ca2 Merge branch 'master' into prompt 2024-02-19 17:31:58 +08:00
Purfview
f144e4c83d Expands the note for distil-whisper (#659) 2024-01-28 21:48:40 +01:00
Purfview
3aec421849 Add: More clarity of what "max_new_tokens" does (#658)
* Add: More clarity of what "max_new_tokens" does
2024-01-28 21:40:33 +01:00
Dominik Macháček
64b9f244bd Whisper-Streaming mention (#656)
under community integrations
2024-01-25 18:27:27 +01:00
Purfview
00efce1696 Bugfix: Illogical "Avoid computing higher temperatures on no_speech" (#652) 2024-01-24 11:54:43 +01:00
metame
ad3c83045b support distil-whisper (#557) 2024-01-24 10:17:12 +01:00
Jürgen Fleiß
72ff979a2e Add GUI faster-whisper project README.md (#554)
Added aTrain GUI faster-whisper transcription and diarization tool as community project.

Co-authored-by: JuergenFleiss <118339672+Juergen-J-F@users.noreply.github.com>
2024-01-18 13:01:02 +01:00
makaveli
615de0d2d9 add WhisperLive to community integration (#647) 2024-01-18 12:54:14 +01:00
6 changed files with 247 additions and 26 deletions

View File

@@ -8,6 +8,8 @@ This implementation is up to 4 times faster than [openai/whisper](https://github
## Benchmark
### Whisper
For reference, here's the time and memory usage that are required to transcribe [**13 minutes**](https://www.youtube.com/watch?v=0u7tTptBo9I) of audio using different implementations:
* [openai/whisper](https://github.com/openai/whisper)@[6dea21fd](https://github.com/openai/whisper/commit/6dea21fd7f7253bfe450f1e2512a0fe47ee2d258)
@@ -36,6 +38,33 @@ For reference, here's the time and memory usage that are required to transcribe
*Executed with 8 threads on a Intel(R) Xeon(R) Gold 6226R.*
### Distil-whisper
| Implementation | Precision | Beam size | Time | Gigaspeech WER |
| --- | --- | --- | --- | --- |
| distil-whisper/distil-large-v2 | fp16 | 4 |- | 10.36 |
| [faster-distil-large-v2](https://huggingface.co/Systran/faster-distil-whisper-large-v2) | fp16 | 5 | - | 10.28 |
| distil-whisper/distil-medium.en | fp16 | 4 | - | 11.21 |
| [faster-distil-medium.en](https://huggingface.co/Systran/faster-distil-whisper-medium.en) | fp16 | 5 | - | 11.21 |
*Executed with CUDA 11.4 on a NVIDIA 3090.*
<details>
<summary>testing details (click to expand)</summary>
For `distil-whisper/distil-large-v2`, the WER is tested with code sample from [link](https://huggingface.co/distil-whisper/distil-large-v2#evaluation). for `faster-distil-whisper`, the WER is tested with setting:
```python
from faster_whisper import WhisperModel
model_size = "distil-large-v2"
# model_size = "distil-medium.en"
# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en")
```
</details>
## Requirements
* Python 3.8 or greater
@@ -101,6 +130,8 @@ pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/
## Usage
### Faster-whisper
```python
from faster_whisper import WhisperModel
@@ -128,6 +159,18 @@ for segment in segments:
segments, _ = model.transcribe("audio.mp3")
segments = list(segments) # The transcription will actually run here.
```
### Faster-distil-whisper
For usage of `faster-ditil-whisper`, please refer to: https://github.com/guillaumekln/faster-whisper/issues/533
```python
model_size = "distil-large-v2"
# model_size = "distil-medium.en"
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5,
language="en", max_new_tokens=128, condition_on_previous_text=False)
```
NOTE: Empirically, `condition_on_previous_text=True` will degrade the performance of `faster-distil-whisper` for long audio. Degradation on the first chunk was observed with `initial_prompt` too.
### Word-level timestamps
@@ -176,16 +219,22 @@ See more model and transcription options in the [`WhisperModel`](https://github.
Here is a non exhaustive list of open-source projects using faster-whisper. Feel free to add your project to the list!
* [WhisperX](https://github.com/m-bain/whisperX) is an award-winning Python library that offers speaker diarization and accurate word-level timestamps using wav2vec2 alignment
* [whisper-ctranslate2](https://github.com/Softcatala/whisper-ctranslate2) is a command line client based on faster-whisper and compatible with the original client from openai/whisper.
* [whisper-diarize](https://github.com/MahmoudAshraf97/whisper-diarization) is a speaker diarization tool that is based on faster-whisper and NVIDIA NeMo.
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) Standalone CLI executables of faster-whisper for Windows, Linux & macOS.
* [asr-sd-pipeline](https://github.com/hedrergudene/asr-sd-pipeline) provides a scalable, modular, end to end multi-speaker speech to text solution implemented using AzureML pipelines.
* [Open-Lyrics](https://github.com/zh-plus/Open-Lyrics) is a Python library that transcribes voice files using faster-whisper, and translates/polishes the resulting text into `.lrc` files in the desired language using OpenAI-GPT.
* [wscribe](https://github.com/geekodour/wscribe) is a flexible transcript generation tool supporting faster-whisper, it can export word level transcript and the exported transcript then can be edited with [wscribe-editor](https://github.com/geekodour/wscribe-editor)
* [aTrain](https://github.com/BANDAS-Center/aTrain) is a graphical user interface implementation of faster-whisper developed at the BANDAS-Center at the University of Graz for transcription and diarization in Windows ([Windows Store App](https://apps.microsoft.com/detail/atrain/9N15Q44SZNS2)) and Linux.
* [Whisper-Streaming](https://github.com/ufal/whisper_streaming) implements real-time mode for offline Whisper-like speech-to-text models with faster-whisper as the most recommended back-end. It implements a streaming policy with self-adaptive latency based on the actual source complexity, and demonstrates the state of the art.
* [WhisperLive](https://github.com/collabora/WhisperLive) is a nearly-live implementation of OpenAI's Whisper which uses faster-whisper as the backend to transcribe audio in real-time.
* [Faster-Whisper-Transcriber](https://github.com/BBC-Esq/ctranslate2-faster-whisper-transcriber) is a simple but reliable voice transcriber that provides a user-friendly interface.
## Model conversion
When loading a model from its size such as `WhisperModel("large-v3")`, the correspondig CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/Systran).
When loading a model from its size such as `WhisperModel("large-v3")`, the corresponding CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/Systran).
We also provide a script to convert any Whisper models compatible with the Transformers library. They could be the original OpenAI models or user fine-tuned models.

View File

@@ -142,11 +142,15 @@ class FeatureExtractor:
data[f] = np.fft.fft(fft_signal, axis=0)[:num_fft_bins]
return data.T
def __call__(self, waveform, padding=True):
def __call__(self, waveform, padding=True, chunk_length=None):
"""
Compute the log-Mel spectrogram of the provided audio, gives similar results
whisper's original torch implementation with 1e-5 tolerance.
"""
if chunk_length is not None:
self.n_samples = chunk_length * self.sampling_rate
self.nb_max_frames = self.n_samples // self.hop_length
if padding:
waveform = np.pad(waveform, [(0, self.n_samples)])

View File

@@ -14,7 +14,7 @@ import tokenizers
from faster_whisper.audio import decode_audio
from faster_whisper.feature_extractor import FeatureExtractor
from faster_whisper.tokenizer import _LANGUAGE_CODES, Tokenizer
from faster_whisper.utils import download_model, format_timestamp, get_logger
from faster_whisper.utils import download_model, format_timestamp, get_end, get_logger
from faster_whisper.vad import (
SpeechTimestampsMap,
VadOptions,
@@ -66,6 +66,9 @@ class TranscriptionOptions(NamedTuple):
word_timestamps: bool
prepend_punctuations: str
append_punctuations: str
max_new_tokens: Optional[int]
clip_timestamps: Union[str, List[float]]
hallucination_silence_threshold: Optional[float]
class TranscriptionInfo(NamedTuple):
@@ -213,6 +216,10 @@ class WhisperModel:
append_punctuations: str = "\"'.。,!?::”)]}、",
vad_filter: bool = False,
vad_parameters: Optional[Union[dict, VadOptions]] = None,
max_new_tokens: Optional[int] = None,
chunk_length: Optional[int] = None,
clip_timestamps: Union[str, List[float]] = "0",
hallucination_silence_threshold: Optional[float] = None,
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
"""Transcribes an input file.
@@ -264,6 +271,16 @@ class WhisperModel:
https://github.com/snakers4/silero-vad.
vad_parameters: Dictionary of Silero VAD parameters or VadOptions class (see available
parameters and default values in the class `VadOptions`).
max_new_tokens: Maximum number of new tokens to generate per-chunk. If not set,
the maximum will be set by the default max_length.
chunk_length: The length of audio segments. If it is not None, it will overwrite the
default chunk_length of the FeatureExtractor.
clip_timestamps: Union[str, List[float]]
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to
process. The last end timestamp defaults to the end of the file.
hallucination_silence_threshold: Optional[float]
When word_timestamps is True, skip silent periods longer than this threshold
(in seconds) when a possible hallucination is detected
Returns:
A tuple with:
@@ -313,7 +330,7 @@ class WhisperModel:
else:
speech_chunks = None
features = self.feature_extractor(audio)
features = self.feature_extractor(audio, chunk_length=chunk_length)
encoder_output = None
all_language_probs = None
@@ -379,6 +396,9 @@ class WhisperModel:
word_timestamps=word_timestamps,
prepend_punctuations=prepend_punctuations,
append_punctuations=append_punctuations,
max_new_tokens=max_new_tokens,
clip_timestamps=clip_timestamps,
hallucination_silence_threshold=hallucination_silence_threshold,
)
segments = self.generate_segments(features, tokenizer, options, encoder_output)
@@ -406,8 +426,33 @@ class WhisperModel:
encoder_output: Optional[ctranslate2.StorageView] = None,
) -> Iterable[Segment]:
content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
content_duration = float(content_frames * self.feature_extractor.time_per_frame)
if isinstance(options.clip_timestamps, str):
TranscriptionOptions.clip_timestamps = [
float(ts)
for ts in (
options.clip_timestamps.split(",")
if options.clip_timestamps
else []
)
]
seek_points: List[int] = [
round(ts * self.frames_per_second) for ts in options.clip_timestamps
]
if len(seek_points) == 0:
seek_points.append(0)
if len(seek_points) % 2 == 1:
seek_points.append(content_frames)
seek_clips: List[Tuple[int, int]] = list(
zip(seek_points[::2], seek_points[1::2])
)
punctuation = "\"'“¿([{-\"'.。,!?::”)]}、"
idx = 0
seek = 0
clip_idx = 0
seek = seek_clips[clip_idx][0]
all_tokens = []
all_prompt_text = []
prompt_reset_since = 0
@@ -421,12 +466,32 @@ class WhisperModel:
all_tokens.extend(options.initial_prompt)
last_speech_timestamp = 0.0
while seek < content_frames:
# NOTE: This loop is obscurely flattened to make the diff readable.
# A later commit should turn this into a simpler nested loop.
# for seek_clip_start, seek_clip_end in seek_clips:
# while seek < seek_clip_end
while clip_idx < len(seek_clips):
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
if seek_clip_end > content_frames:
seek_clip_end = content_frames
if seek < seek_clip_start:
seek = seek_clip_start
if seek >= seek_clip_end:
clip_idx += 1
if clip_idx < len(seek_clips):
seek = seek_clips[clip_idx][0]
continue
time_offset = seek * self.feature_extractor.time_per_frame
segment = features[:, seek : seek + self.feature_extractor.nb_max_frames]
segment_size = min(
self.feature_extractor.nb_max_frames, content_frames - seek
window_end_time = float(
(seek + self.feature_extractor.nb_max_frames)
* self.feature_extractor.time_per_frame
)
segment_size = min(
self.feature_extractor.nb_max_frames,
content_frames - seek,
seek_clip_end - seek,
)
segment = features[:, seek : seek + segment_size]
segment_duration = segment_size * self.feature_extractor.time_per_frame
if self.logger.isEnabledFor(logging.DEBUG):
@@ -479,10 +544,33 @@ class WhisperModel:
previous_seek = seek
current_segments = []
# anomalous words are very long/short/improbable
def word_anomaly_score(word: dict) -> float:
probability = word.get("probability", 0.0)
duration = word["end"] - word["start"]
score = 0.0
if probability < 0.15:
score += 1.0
if duration < 0.133:
score += (0.133 - duration) * 15
if duration > 2.0:
score += duration - 2.0
return score
def is_segment_anomaly(segment: Optional[dict]) -> bool:
if segment is None or not segment["words"]:
return False
words = [w for w in segment["words"] if w["word"] not in punctuation]
words = words[:8]
score = sum(word_anomaly_score(w) for w in words)
return score >= 3 or score + 0.01 >= len(words)
def next_words_segment(segments: List[dict]) -> Optional[dict]:
return next((s for s in segments if s["words"]), None)
single_timestamp_ending = (
len(tokens) >= 2
and tokens[-2] < tokenizer.timestamp_begin
and tokens[-1] >= tokenizer.timestamp_begin
and tokens[-2] < tokenizer.timestamp_begin <= tokens[-1]
)
consecutive_timestamps = [
@@ -565,18 +653,70 @@ class WhisperModel:
last_speech_timestamp=last_speech_timestamp,
)
word_end_timestamps = [
w["end"] for s in current_segments for w in s["words"]
]
if len(word_end_timestamps) > 0:
last_speech_timestamp = word_end_timestamps[-1]
if not single_timestamp_ending and len(word_end_timestamps) > 0:
seek_shift = round(
(word_end_timestamps[-1] - time_offset) * self.frames_per_second
)
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
seek = round(last_word_end * self.frames_per_second)
if seek_shift > 0:
seek = previous_seek + seek_shift
# skip silence before possible hallucinations
if options.hallucination_silence_threshold is not None:
threshold = options.hallucination_silence_threshold
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
remaining_duration = window_end_time - last_word_end
if remaining_duration > threshold:
seek = round(last_word_end * self.frames_per_second)
else:
seek = previous_seek + segment_size
# if first segment might be a hallucination, skip leading silence
first_segment = next_words_segment(current_segments)
if first_segment is not None and is_segment_anomaly(first_segment):
gap = first_segment["start"] - time_offset
if gap > threshold:
seek = previous_seek + round(gap * self.frames_per_second)
continue
# skip silence before any possible hallucination that is surrounded
# by silence or more hallucinations
hal_last_end = last_speech_timestamp
for si in range(len(current_segments)):
segment = current_segments[si]
if not segment["words"]:
continue
if is_segment_anomaly(segment):
next_segment = next_words_segment(
current_segments[si + 1 :]
)
if next_segment is not None:
hal_next_start = next_segment["words"][0]["start"]
else:
hal_next_start = time_offset + segment_duration
silence_before = (
segment["start"] - hal_last_end > threshold
or segment["start"] < threshold
or segment["start"] - time_offset < 2.0
)
silence_after = (
hal_next_start - segment["end"] > threshold
or is_segment_anomaly(next_segment)
or window_end_time - segment["end"] < 2.0
)
if silence_before and silence_after:
seek = round(
max(time_offset + 1, segment["start"])
* self.frames_per_second
)
if content_duration - segment["end"] < threshold:
seek = content_frames
current_segments[si:] = []
break
hal_last_end = segment["end"]
last_word_end = get_end(current_segments)
if last_word_end is not None:
last_speech_timestamp = last_word_end
for segment in current_segments:
tokens = segment["tokens"]
@@ -651,6 +791,21 @@ class WhisperModel:
max_initial_timestamp_index = int(
round(options.max_initial_timestamp / self.time_precision)
)
if options.max_new_tokens is not None:
max_length = len(prompt) + options.max_new_tokens
else:
max_length = self.max_length
if max_length > self.max_length:
raise ValueError(
f"The length of the prompt is {len(prompt)}, and the `max_new_tokens` "
f"{max_length - len(prompt)}. Thus, the combined length of the prompt "
f"and `max_new_tokens` is: {max_length}. This exceeds the "
f"`max_length` of the Whisper model: {self.max_length}. "
"You should either reduce the length of your prompt, or "
"reduce the value of `max_new_tokens`, "
f"so that their combined length is less that {self.max_length}."
)
for temperature in options.temperatures:
if temperature > 0:
@@ -672,7 +827,7 @@ class WhisperModel:
length_penalty=options.length_penalty,
repetition_penalty=options.repetition_penalty,
no_repeat_ngram_size=options.no_repeat_ngram_size,
max_length=self.max_length,
max_length=max_length,
return_scores=True,
return_no_speech_prob=True,
suppress_blank=options.suppress_blank,
@@ -730,6 +885,8 @@ class WhisperModel:
if (
options.no_speech_threshold is not None
and result.no_speech_prob > options.no_speech_threshold
and options.log_prob_threshold is not None
and avg_logprob < options.log_prob_threshold
):
needs_fallback = False # silence
@@ -803,6 +960,7 @@ class WhisperModel:
word_durations = np.array([word["end"] - word["start"] for word in alignment])
word_durations = word_durations[word_durations.nonzero()]
median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
median_duration = min(0.7, float(median_duration))
max_duration = median_duration * 2
# hack: truncate long words at sentence boundaries.

View File

@@ -22,6 +22,9 @@ _MODELS = {
"large-v2": "Systran/faster-whisper-large-v2",
"large-v3": "Systran/faster-whisper-large-v3",
"large": "Systran/faster-whisper-large-v3",
"distil-large-v2": "Systran/faster-distil-whisper-large-v2",
"distil-medium.en": "Systran/faster-distil-whisper-medium.en",
"distil-small.en": "Systran/faster-distil-whisper-small.en",
}
@@ -143,3 +146,10 @@ class disabled_tqdm(tqdm):
def __init__(self, *args, **kwargs):
kwargs["disable"] = True
super().__init__(*args, **kwargs)
def get_end(segments: List[dict]) -> Optional[float]:
return next(
(w["end"] for s in reversed(segments) for w in reversed(s["words"])),
segments[-1]["end"] if segments else None,
)

View File

@@ -1,3 +1,3 @@
"""Version information."""
__version__ = "0.10.0"
__version__ = "1.0.0"

View File

@@ -1,5 +1,5 @@
av==10.*
ctranslate2>=3.22,<4
av==11.*
ctranslate2>=4.0,<5
huggingface_hub>=0.13
tokenizers>=0.13,<0.16
onnxruntime>=1.14,<2