Add files via upload

This commit is contained in:
Anjok07
2023-03-31 05:15:39 -05:00
committed by GitHub
parent bf19d63b33
commit 786bb05c5e
2 changed files with 432 additions and 300 deletions

391
UVR.py
View File

@@ -53,11 +53,14 @@ from tkinter import *
from tkinter.tix import *
import re
from typing import List
import sys
import ssl
logging.basicConfig(format='%(asctime)s - %(message)s', level=logging.INFO)
logging.info('UVR BEGIN')
PREVIOUS_PATCH_WIN = 'UVR_Patch_1_12_23_14_54'
is_dnd_compatible = True
banner_placement = -2
@@ -159,12 +162,15 @@ VR_MODELS_DIR = os.path.join(MODELS_DIR, 'VR_Models')
MDX_MODELS_DIR = os.path.join(MODELS_DIR, 'MDX_Net_Models')
DEMUCS_MODELS_DIR = os.path.join(MODELS_DIR, 'Demucs_Models')
DEMUCS_NEWER_REPO_DIR = os.path.join(DEMUCS_MODELS_DIR, 'v3_v4_repo')
MDX_MIXER_PATH = os.path.join(BASE_PATH, 'lib_v5', 'mixer.ckpt')
#Cache & Parameters
VR_HASH_DIR = os.path.join(VR_MODELS_DIR, 'model_data')
VR_HASH_JSON = os.path.join(VR_MODELS_DIR, 'model_data', 'model_data.json')
MDX_HASH_DIR = os.path.join(MDX_MODELS_DIR, 'model_data')
MDX_HASH_JSON = os.path.join(MDX_MODELS_DIR, 'model_data', 'model_data.json')
DEMUCS_MODEL_NAME_SELECT = os.path.join(DEMUCS_MODELS_DIR, 'model_data', 'model_name_mapper.json')
MDX_MODEL_NAME_SELECT = os.path.join(MDX_MODELS_DIR, 'model_data', 'model_name_mapper.json')
ENSEMBLE_CACHE_DIR = os.path.join(BASE_PATH, 'gui_data', 'saved_ensembles')
SETTINGS_CACHE_DIR = os.path.join(BASE_PATH, 'gui_data', 'saved_settings')
VR_PARAM_DIR = os.path.join(BASE_PATH, 'lib_v5', 'vr_network', 'modelparams')
@@ -244,13 +250,17 @@ class ModelData():
self.is_primary_stem_only = root.is_primary_stem_only_var.get()
self.is_secondary_stem_only = root.is_secondary_stem_only_var.get()
self.is_denoise = root.is_denoise_var.get()
self.mdx_batch_size = 1 if root.mdx_batch_size_var.get() == DEF_OPT else int(root.mdx_batch_size_var.get())
self.is_mdx_ckpt = False
self.wav_type_set = root.wav_type_set
self.mp3_bit_set = root.mp3_bit_set_var.get()
self.save_format = root.save_format_var.get()
self.is_invert_spec = root.is_invert_spec_var.get()
self.is_mixer_mode = root.is_mixer_mode_var.get()
self.demucs_stems = root.demucs_stems_var.get()
self.demucs_source_list = []
self.demucs_stem_count = 0
self.mixer_path = MDX_MIXER_PATH
self.model_name = model_name
self.process_method = selected_process_method
self.model_status = False if self.model_name == CHOOSE_MODEL or self.model_name == NO_MODEL else True
@@ -271,6 +281,8 @@ class ModelData():
self.is_pre_proc_model = is_pre_proc_model
self.is_dry_check = is_dry_check
self.model_samplerate = 44100
self.model_capacity = 32, 128
self.is_vr_51_model = False
self.is_demucs_pre_proc_model_inst_mix = False
self.manual_download_Button = None
self.secondary_model_4_stem = []
@@ -301,27 +313,31 @@ class ModelData():
self.is_tta = root.is_tta_var.get()
self.is_post_process = root.is_post_process_var.get()
self.window_size = int(root.window_size_var.get())
self.batch_size = int(root.batch_size_var.get())
self.batch_size = 1 if root.batch_size_var.get() == DEF_OPT else int(root.batch_size_var.get())
self.crop_size = int(root.crop_size_var.get())
self.is_high_end_process = 'mirroring' if root.is_high_end_process_var.get() else 'None'
self.post_process_threshold = float(root.post_process_threshold_var.get())
self.model_capacity = 32, 128
self.model_path = os.path.join(VR_MODELS_DIR, f"{self.model_name}.pth")
self.get_model_hash()
if self.model_hash:
self.model_data = self.get_model_data(VR_HASH_DIR, root.vr_hash_MAPPER)
self.model_data = self.get_model_data(VR_HASH_DIR, root.vr_hash_MAPPER) if not self.model_hash == WOOD_INST_MODEL_HASH else WOOD_INST_PARAMS
if self.model_data:
vr_model_param = os.path.join(VR_PARAM_DIR, "{}.json".format(self.model_data["vr_model_param"]))
self.primary_stem = self.model_data["primary_stem"]
self.secondary_stem = STEM_PAIR_MAPPER[self.primary_stem]
self.vr_model_param = ModelParameters(vr_model_param)
self.model_samplerate = self.vr_model_param.param['sr']
if "nout" in self.model_data.keys() and "nout_lstm" in self.model_data.keys():
self.model_capacity = self.model_data["nout"], self.model_data["nout_lstm"]
self.is_vr_51_model = True
else:
self.model_status = False
if self.process_method == MDX_ARCH_TYPE:
self.is_secondary_model_activated = root.mdx_is_secondary_model_activate_var.get() if not is_secondary_model else False
self.margin = int(root.margin_var.get())
self.chunks = root.determine_auto_chunks(root.chunks_var.get(), self.is_gpu_conversion)
self.chunks = root.determine_auto_chunks(root.chunks_var.get(), self.is_gpu_conversion) if root.is_chunk_mdxnet_var.get() else 0
self.get_mdx_model_path()
self.get_model_hash()
if self.model_hash:
@@ -392,12 +408,19 @@ class ModelData():
def get_mdx_model_path(self):
for file_name, chosen_mdx_model in MDX_NAME_SELECT.items():
if self.model_name.endswith(CKPT):
# self.chunks = 0
# self.is_mdx_batch_mode = True
self.is_mdx_ckpt = True
ext = '' if self.is_mdx_ckpt else ONNX
for file_name, chosen_mdx_model in root.mdx_name_select_MAPPER.items():
if self.model_name in chosen_mdx_model:
self.model_path = os.path.join(MDX_MODELS_DIR, f"{file_name}.onnx")
self.model_path = os.path.join(MDX_MODELS_DIR, f"{file_name}{ext}")
break
else:
self.model_path = os.path.join(MDX_MODELS_DIR, f"{self.model_name}.onnx")
self.model_path = os.path.join(MDX_MODELS_DIR, f"{self.model_name}{ext}")
self.mixer_path = os.path.join(MDX_MODELS_DIR, f"mixer_val.ckpt")
@@ -406,7 +429,7 @@ class ModelData():
demucs_newer = [True for x in DEMUCS_NEWER_TAGS if x in self.model_name]
demucs_model_dir = DEMUCS_NEWER_REPO_DIR if demucs_newer else DEMUCS_MODELS_DIR
for file_name, chosen_model in DEMUCS_NAME_SELECT.items():
for file_name, chosen_model in root.demucs_name_select_MAPPER.items():
if self.model_name in chosen_model:
self.model_path = os.path.join(demucs_model_dir, file_name)
break
@@ -475,10 +498,13 @@ class ModelData():
break
if not self.model_hash:
with open(self.model_path, 'rb') as f:
f.seek(- 10000 * 1024, 2)
self.model_hash = hashlib.md5(f.read()).hexdigest()
try:
with open(self.model_path, 'rb') as f:
f.seek(- 10000 * 1024, 2)
self.model_hash = hashlib.md5(f.read()).hexdigest()
except:
self.model_hash = hashlib.md5(open(self.model_path,'rb').read()).hexdigest()
table_entry = {self.model_path: self.model_hash}
model_hash_table.update(table_entry)
@@ -523,6 +549,7 @@ class Ensembler():
stem_outputs = self.get_files_to_ensemble(folder=export_path, prefix=audio_file_base, suffix=f"_({stem_tag}).wav")
audio_file_output = f"{self.is_testing_audio}{audio_file_base}{self.chosen_ensemble}_({stem_tag})"
stem_save_path = os.path.join('{}'.format(self.main_export_path),'{}.wav'.format(audio_file_output))
if stem_outputs:
spec_utils.ensemble_inputs(stem_outputs, algorithm, self.is_normalization, self.wav_type_set, stem_save_path)
save_format(stem_save_path, self.save_format, self.mp3_bit_set)
@@ -537,11 +564,29 @@ class Ensembler():
except Exception as e:
print(e)
def ensemble_manual(self, audio_inputs, audio_file_base):
def ensemble_manual(self, audio_inputs, audio_file_base, is_bulk=False):
"""Processes the given outputs and ensembles them with the chosen algorithm"""
is_mv_sep = True
if is_bulk:
number_list = list(set([os.path.basename(i).split("_")[0] for i in audio_inputs]))
for n in number_list:
current_list = [i for i in audio_inputs if os.path.basename(i).startswith(n)]
audio_file_base = os.path.basename(current_list[0]).split('.wav')[0]
stem_testing = "instrum" if "Instrumental" in audio_file_base else "vocals"
if is_mv_sep:
audio_file_base = audio_file_base.split("_")
audio_file_base = f"{audio_file_base[1]}_{audio_file_base[2]}_{stem_testing}"
self.ensemble_manual_process(current_list, audio_file_base, is_bulk)
else:
self.ensemble_manual_process(audio_inputs, audio_file_base, is_bulk)
def ensemble_manual_process(self, audio_inputs, audio_file_base, is_bulk):
algorithm = root.choose_algorithm_var.get()
stem_save_path = os.path.join('{}'.format(self.main_export_path),'{}{}_({}).wav'.format(self.is_testing_audio, audio_file_base, algorithm))
algorithm_text = "" if is_bulk else f"_({root.choose_algorithm_var.get()})"
stem_save_path = os.path.join('{}'.format(self.main_export_path),'{}{}{}.wav'.format(self.is_testing_audio, audio_file_base, algorithm_text))
spec_utils.ensemble_inputs(audio_inputs, algorithm, self.is_normalization, self.wav_type_set, stem_save_path)
save_format(stem_save_path, self.save_format, self.mp3_bit_set)
@@ -597,7 +642,7 @@ class ToolTip(object):
tw.wm_overrideredirect(1)
tw.wm_geometry("+%d+%d" % (x, y))
label = Label(tw, text=self.text, justify=LEFT,
background="#151515", foreground="#dedede", highlightcolor="#898b8e", relief=SOLID, borderwidth=1,
background="#333333", foreground="#ffffff", highlightcolor="#898b8e", relief=SOLID, borderwidth=1,
font=(MAIN_FONT_NAME, f"{FONT_SIZE_1}", "normal"))#('Century Gothic', FONT_SIZE_4)
label.pack(ipadx=1)
@@ -797,6 +842,8 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.clear_cache_torch = False
self.vr_hash_MAPPER = load_model_hash_data(VR_HASH_JSON)
self.mdx_hash_MAPPER = load_model_hash_data(MDX_HASH_JSON)
self.mdx_name_select_MAPPER = load_model_hash_data(MDX_MODEL_NAME_SELECT)
self.demucs_name_select_MAPPER = load_model_hash_data(DEMUCS_MODEL_NAME_SELECT)
self.is_gpu_available = torch.cuda.is_available() if not OPERATING_SYSTEM == 'Darwin' else torch.backends.mps.is_available()
self.is_process_stopped = False
self.inputs_from_dir = []
@@ -968,7 +1015,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
if arch_type == MDX_ARCH_TYPE:
model_data: List[ModelData] = [ModelData(model, MDX_ARCH_TYPE)]
if arch_type == DEMUCS_ARCH_TYPE:
model_data: List[ModelData] = [ModelData(model, DEMUCS_ARCH_TYPE)]
model_data: List[ModelData] = [ModelData(model, DEMUCS_ARCH_TYPE)]#
return model_data
@@ -979,7 +1026,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
if network == MDX_ARCH_TYPE:
dir = MDX_HASH_DIR
[os.remove(os.path.join(dir, x)) for x in os.listdir(dir) if x not in 'model_data.json']
[os.remove(os.path.join(dir, x)) for x in os.listdir(dir) if x not in ['model_data.json', 'model_name_mapper.json']]
self.vr_model_var.set(CHOOSE_MODEL)
self.mdx_net_model_var.set(CHOOSE_MODEL)
self.model_data_table.clear()
@@ -1113,21 +1160,21 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.mdx_net_model_Option_place = lambda:self.mdx_net_model_Option.place(x=0, y=LOW_MENU_Y[1], width=LEFT_ROW_WIDTH, height=OPTION_HEIGHT, relx=0, rely=7/self.COL1_ROWS, relwidth=1/3, relheight=1/self.COL1_ROWS)
self.help_hints(self.mdx_net_model_Label, text=CHOOSE_MODEL_HELP)
# MDX-chunks
self.chunks_Label = self.main_window_LABEL_SET(self.options_Frame, CHUNKS_MDX_MAIN_LABEL)
self.chunks_Label_place = lambda:self.chunks_Label.place(x=MAIN_ROW_X[0], y=MAIN_ROW_Y[0], width=0, height=LABEL_HEIGHT, relx=1/3, rely=2/self.COL1_ROWS, relwidth=1/3, relheight=1/self.COL2_ROWS)
self.chunks_Option = ttk.Combobox(self.options_Frame, value=CHUNKS, textvariable=self.chunks_var)
self.chunks_Option_place = lambda:self.chunks_Option.place(x=MAIN_ROW_X[1], y=MAIN_ROW_Y[1], width=MAIN_ROW_WIDTH, height=OPTION_HEIGHT, relx=1/3, rely=3/self.COL1_ROWS, relwidth=1/3, relheight=1/self.COL2_ROWS)
self.combobox_entry_validation(self.chunks_Option, self.chunks_var, REG_CHUNKS, CHUNKS)
self.help_hints(self.chunks_Label, text=CHUNKS_HELP)
# MDX-Margin
self.margin_Label = self.main_window_LABEL_SET(self.options_Frame, MARGIN_MDX_MAIN_LABEL)
self.margin_Label_place = lambda:self.margin_Label.place(x=MAIN_ROW_2_X[0], y=MAIN_ROW_2_Y[0], width=0, height=LABEL_HEIGHT, relx=2/3, rely=2/self.COL1_ROWS, relwidth=1/3, relheight=1/self.COL2_ROWS)
self.margin_Option = ttk.Combobox(self.options_Frame, value=MARGIN_SIZE, textvariable=self.margin_var)
self.margin_Option_place = lambda:self.margin_Option.place(x=MAIN_ROW_2_X[1], y=MAIN_ROW_2_Y[1], width=MAIN_ROW_WIDTH, height=OPTION_HEIGHT, relx=2/3, rely=3/self.COL1_ROWS, relwidth=1/3, relheight=1/self.COL2_ROWS)
self.combobox_entry_validation(self.margin_Option, self.margin_var, REG_MARGIN, MARGIN_SIZE)
self.help_hints(self.margin_Label, text=MARGIN_HELP)
# MDX-Batches
self.mdx_batch_size_Label = self.main_window_LABEL_SET(self.options_Frame, BATCHES_MDX_MAIN_LABEL)
self.mdx_batch_size_Label_place = lambda:self.mdx_batch_size_Label.place(x=MAIN_ROW_X[0], y=MAIN_ROW_Y[0], width=0, height=LABEL_HEIGHT, relx=1/3, rely=2/self.COL1_ROWS, relwidth=1/3, relheight=1/self.COL2_ROWS)
self.mdx_batch_size_Option = ttk.Combobox(self.options_Frame, value=BATCH_SIZE, width=MENU_COMBOBOX_WIDTH, textvariable=self.mdx_batch_size_var)
self.mdx_batch_size_Option_place = lambda:self.mdx_batch_size_Option.place(x=MAIN_ROW_X[1], y=MAIN_ROW_Y[1], width=MAIN_ROW_WIDTH, height=OPTION_HEIGHT, relx=1/3, rely=3/self.COL1_ROWS, relwidth=1/3, relheight=1/self.COL2_ROWS)
self.combobox_entry_validation(self.mdx_batch_size_Option, self.mdx_batch_size_var, REG_BATCHES, BATCH_SIZE)
self.help_hints(self.mdx_batch_size_Label, text=BATCH_SIZE_HELP)
# MDX-Volume Compensation
self.compensate_Label = self.main_window_LABEL_SET(self.options_Frame, VOL_COMP_MDX_MAIN_LABEL)
self.compensate_Label_place = lambda:self.compensate_Label.place(x=MAIN_ROW_2_X[0], y=MAIN_ROW_2_Y[0], width=0, height=LABEL_HEIGHT, relx=2/3, rely=2/self.COL1_ROWS, relwidth=1/3, relheight=1/self.COL2_ROWS)
self.compensate_Option = ttk.Combobox(self.options_Frame, value=VOL_COMPENSATION, width=MENU_COMBOBOX_WIDTH, textvariable=self.compensate_var)
self.compensate_Option_place = lambda:self.compensate_Option.place(x=MAIN_ROW_2_X[1], y=MAIN_ROW_2_Y[1], width=MAIN_ROW_WIDTH, height=OPTION_HEIGHT, relx=2/3, rely=3/self.COL1_ROWS, relwidth=1/3, relheight=1/self.COL2_ROWS)
self.combobox_entry_validation(self.compensate_Option, self.compensate_var, REG_COMPENSATION, VOL_COMPENSATION)
self.help_hints(self.compensate_Label, text=COMPENSATE_HELP)
### VR ARCH ###
@@ -1301,10 +1348,10 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.segment_Option,
self.mdx_net_model_Label,
self.mdx_net_model_Option,
self.chunks_Label,
self.chunks_Option,
self.margin_Label,
self.margin_Option,
self.mdx_batch_size_Label,
self.mdx_batch_size_Option,
self.compensate_Label,
self.compensate_Option,
self.chosen_ensemble_Label,
self.chosen_ensemble_Option,
self.save_current_settings_Label,
@@ -1337,6 +1384,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.demucs_model_var,
self.demucs_stems_var,
self.is_chunk_demucs_var,
self.is_chunk_mdxnet_var,
self.is_primary_stem_only_Demucs_var,
self.is_secondary_stem_only_Demucs_var,
self.is_primary_stem_only_var,
@@ -1361,12 +1409,24 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
invalid = lambda:(var.set(default[0]))
combobox.config(validate='focus', validatecommand=(self.register(validation), '%P'), invalidcommand=(self.register(invalid),))
def combo_box_selection_clear(self):
for option in self.options_Frame.winfo_children():
if type(option) is ttk.Combobox:
option.selection_clear()
def bind_widgets(self):
"""Bind widgets to the drag & drop mechanic"""
self.chosen_audio_tool_align = tk.BooleanVar(value=True)
add_align = lambda e:(self.chosen_audio_tool_Option['menu'].add_radiobutton(label=ALIGN_INPUTS, command=tk._setit(self.chosen_audio_tool_var, ALIGN_INPUTS)), self.chosen_audio_tool_align.set(False)) if self.chosen_audio_tool_align else None
self.chosen_audio_tool_align = tk.BooleanVar(value=True)
other_items = [self.options_Frame, self.filePaths_Frame, self.title_Label, self.progressbar, self.conversion_Button, self.settings_Button, self.stop_Button, self.command_Text]
all_widgets = self.options_Frame.winfo_children() + self.filePaths_Frame.winfo_children() + other_items
for option in all_widgets:
if type(option) is ttk.Combobox:
option.bind("<FocusOut>", lambda e:option.selection_clear())
else:
option.bind('<Button-1>', lambda e:(option.focus(), self.combo_box_selection_clear()))
if is_dnd_compatible:
self.filePaths_saveTo_Button.drop_target_register(DND_FILES)
self.filePaths_saveTo_Entry.drop_target_register(DND_FILES)
@@ -1376,10 +1436,10 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.filePaths_saveTo_Entry.dnd_bind('<<Drop>>', lambda e: drop(e, accept_mode='folder'))
self.ensemble_listbox_Option.bind('<<ListboxSelect>>', lambda e: self.chosen_ensemble_var.set(CHOOSE_ENSEMBLE_OPTION))
self.options_Frame.bind(right_click_button, lambda e:self.right_click_menu_popup(e, main_menu=True))
self.filePaths_musicFile_Entry.bind(right_click_button, lambda e:self.input_right_click_menu(e))
self.filePaths_musicFile_Entry.bind('<Button-1>', lambda e:self.check_is_open_menu_view_inputs())
self.options_Frame.bind(right_click_button, lambda e:(self.right_click_menu_popup(e, main_menu=True), self.options_Frame.focus()))
self.filePaths_musicFile_Entry.bind(right_click_button, lambda e:(self.input_right_click_menu(e), self.filePaths_musicFile_Entry.focus()))
self.filePaths_musicFile_Entry.bind('<Button-1>', lambda e:(self.check_is_open_menu_view_inputs(), self.filePaths_musicFile_Entry.focus()))
#--Input/Export Methods--
def input_select_filedialog(self):
@@ -1472,10 +1532,12 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
except Exception as e:
self.error_log_var.set(error_text('Temp File Deletion', e))
def get_files_from_dir(self, directory, ext):
def get_files_from_dir(self, directory, ext, is_mdxnet=False):
"""Gets files from specified directory that ends with specified extention"""
return tuple(os.path.splitext(x)[0] for x in os.listdir(directory) if x.endswith(ext))
#ext = '.onnx' if is_mdxnet else ext
return tuple(x if is_mdxnet and x.endswith(CKPT) else os.path.splitext(x)[0] for x in os.listdir(directory) if x.endswith(ext))
def determine_auto_chunks(self, chunks, gpu):
"""Determines appropriate chunk size based on user computer specs"""
@@ -1483,6 +1545,10 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
if OPERATING_SYSTEM == 'Darwin':
gpu = -1
if chunks == BATCH_MODE:
chunks = 0
#self.chunks_var.set(AUTO_SELECT)
if chunks == 'Full':
chunk_set = 0
elif chunks == 'Auto':
@@ -2355,27 +2421,16 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
aggression_setting_Label = self.menu_sub_LABEL_SET(vr_opt_frame, 'Aggression Setting')
aggression_setting_Label.grid(row=3,column=0,padx=0,pady=5)
aggression_setting_Option = ttk.Combobox(vr_opt_frame, value=VR_BATCH, width=MENU_COMBOBOX_WIDTH, textvariable=self.aggression_setting_var)
aggression_setting_Option = ttk.Combobox(vr_opt_frame, value=VR_AGGRESSION, width=MENU_COMBOBOX_WIDTH, textvariable=self.aggression_setting_var)
aggression_setting_Option.grid(row=4,column=0,padx=0,pady=5)
self.combobox_entry_validation(aggression_setting_Option, self.aggression_setting_var, REG_WINDOW, VR_BATCH)
self.combobox_entry_validation(aggression_setting_Option, self.aggression_setting_var, REG_WINDOW, ['10'])
self.help_hints(aggression_setting_Label, text=AGGRESSION_SETTING_HELP)
self.crop_size_Label = self.menu_sub_LABEL_SET(vr_opt_frame, 'Crop Size')
self.crop_size_Label.grid(row=5,column=0,padx=0,pady=5)
self.crop_size_sub_Label = self.menu_sub_LABEL_SET(vr_opt_frame, '(Works with select models only)', font_size=FONT_SIZE_1)
self.crop_size_sub_Label.grid(row=6,column=0,padx=0,pady=0)
self.crop_size_Option = ttk.Combobox(vr_opt_frame, value=VR_CROP, width=MENU_COMBOBOX_WIDTH, textvariable=self.crop_size_var)
self.crop_size_Option.grid(row=7,column=0,padx=0,pady=5)
self.combobox_entry_validation(self.crop_size_Option, self.crop_size_var, REG_WINDOW, VR_CROP)
self.help_hints(self.crop_size_Label, text=CROP_SIZE_HELP)
self.batch_size_Label = self.menu_sub_LABEL_SET(vr_opt_frame, 'Batch Size')
self.batch_size_Label.grid(row=8,column=0,padx=0,pady=5)
self.batch_size_sub_Label = self.menu_sub_LABEL_SET(vr_opt_frame, '(Works with select models only)', font_size=FONT_SIZE_1)
self.batch_size_sub_Label.grid(row=9,column=0,padx=0,pady=0)
self.batch_size_Option = ttk.Combobox(vr_opt_frame, value=VR_BATCH, width=MENU_COMBOBOX_WIDTH, textvariable=self.batch_size_var)
self.batch_size_Option = ttk.Combobox(vr_opt_frame, value=BATCH_SIZE, width=MENU_COMBOBOX_WIDTH, textvariable=self.batch_size_var)
self.batch_size_Option.grid(row=10,column=0,padx=0,pady=5)
self.combobox_entry_validation(self.batch_size_Option, self.batch_size_var, REG_WINDOW, VR_BATCH)
self.combobox_entry_validation(self.batch_size_Option, self.batch_size_var, REG_BATCHES, BATCH_SIZE)
self.help_hints(self.batch_size_Label, text=BATCH_SIZE_HELP)
self.post_process_threshold_Label = self.menu_sub_LABEL_SET(vr_opt_frame, 'Post-process Threshold')
@@ -2468,14 +2523,14 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.chunks_demucs_Label.grid(row=7,column=0,padx=0,pady=5)
self.chunks_demucs_Option = ttk.Combobox(demucs_frame, value=CHUNKS, width=MENU_COMBOBOX_WIDTH, textvariable=self.chunks_demucs_var)
self.chunks_demucs_Option.grid(row=8,column=0,padx=0,pady=5)
self.combobox_entry_validation(self.chunks_demucs_Option, self.chunks_demucs_var, REG_CHUNKS, CHUNKS)
self.help_hints(self.chunks_demucs_Label, text=CHUNKS_HELP)
self.combobox_entry_validation(self.chunks_demucs_Option, self.chunks_demucs_var, REG_CHUNKS_DEMUCS, CHUNKS)
self.help_hints(self.chunks_demucs_Label, text=CHUNKS_DEMUCS_HELP)
self.margin_demucs_Label = self.menu_sub_LABEL_SET(demucs_frame, 'Chunk Margin')
self.margin_demucs_Label.grid(row=9,column=0,padx=0,pady=5)
self.margin_demucs_Option = ttk.Combobox(demucs_frame, value=MARGIN_SIZE, width=MENU_COMBOBOX_WIDTH, textvariable=self.margin_demucs_var)
self.margin_demucs_Option.grid(row=10,column=0,padx=0,pady=5)
self.combobox_entry_validation(self.margin_Option, self.margin_demucs_var, REG_MARGIN, MARGIN_SIZE)
self.combobox_entry_validation(self.margin_demucs_Option, self.margin_demucs_var, REG_MARGIN, MARGIN_SIZE)
self.help_hints(self.margin_demucs_Label, text=MARGIN_HELP)
self.is_chunk_demucs_Option = ttk.Checkbutton(demucs_frame, text='Enable Chunks', width=DEMUCS_CHECKBOXS_WIDTH, variable=self.is_chunk_demucs_var, command=chunks_toggle)
@@ -2494,14 +2549,18 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
is_invert_spec_Option.grid(row=14,column=0,padx=0,pady=0)
self.help_hints(is_invert_spec_Option, text=IS_INVERT_SPEC_HELP)
is_mixer_mode_Option = ttk.Checkbutton(demucs_frame, text='Mixer Mode', width=DEMUCS_CHECKBOXS_WIDTH, variable=self.is_mixer_mode_var)
is_mixer_mode_Option.grid(row=15,column=0,padx=0,pady=0)
self.help_hints(is_mixer_mode_Option, text=IS_MIXER_MODE_HELP)
self.open_demucs_model_dir_Button = ttk.Button(demucs_frame, text='Open Demucs Model Folder', command=lambda:OPEN_FILE_func(DEMUCS_MODELS_DIR))
self.open_demucs_model_dir_Button.grid(row=15,column=0,padx=0,pady=5)
self.open_demucs_model_dir_Button.grid(row=16,column=0,padx=0,pady=5)
self.demucs_return_Button = ttk.Button(demucs_frame, text=BACK_TO_MAIN_MENU, command=lambda:(self.menu_advanced_demucs_options_close_window(), self.check_is_menu_settings_open()))
self.demucs_return_Button.grid(row=16,column=0,padx=0,pady=5)
self.demucs_return_Button.grid(row=17,column=0,padx=0,pady=5)
self.demucs_close_Button = ttk.Button(demucs_frame, text='Close Window', command=lambda:self.menu_advanced_demucs_options_close_window())
self.demucs_close_Button.grid(row=17,column=0,padx=0,pady=5)
self.demucs_close_Button.grid(row=18,column=0,padx=0,pady=5)
demucs_pre_proc_model_title_Label = self.menu_title_LABEL_SET(demucs_pre_model_frame, "Pre-process Model")
demucs_pre_proc_model_title_Label.grid(row=0,column=0,padx=0,pady=15)
@@ -2536,6 +2595,10 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
tab1 = self.menu_tab_control(mdx_net_opt, self.mdx_secondary_model_vars)
enable_chunks = lambda:(margin_Option.configure(state=tk.NORMAL), chunks_Option.configure(state=tk.NORMAL))
disable_chunks = lambda:(margin_Option.configure(state=tk.DISABLED), chunks_Option.configure(state=tk.DISABLED))
chunks_toggle = lambda:enable_chunks() if self.is_chunk_mdxnet_var.get() else disable_chunks()
mdx_net_frame = self.menu_FRAME_SET(tab1)
mdx_net_frame.grid(row=0,column=0,padx=0,pady=0)
@@ -2543,47 +2606,60 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
mdx_opt_title.grid(row=0,column=0,padx=0,pady=10)
if not self.chosen_process_method_var.get() == MDX_ARCH_TYPE:
chunks_Label = self.menu_sub_LABEL_SET(mdx_net_frame, 'Chunks')
chunks_Label.grid(row=1,column=0,padx=0,pady=5)
chunks_Option = ttk.Combobox(mdx_net_frame, value=CHUNKS, width=MENU_COMBOBOX_WIDTH, textvariable=self.chunks_var)
chunks_Option.grid(row=2,column=0,padx=0,pady=5)
self.combobox_entry_validation(chunks_Option, self.chunks_var, REG_CHUNKS, CHUNKS)
self.help_hints(chunks_Label, text=CHUNKS_HELP)
mdx_batch_size_Label = self.menu_sub_LABEL_SET(mdx_net_frame, 'Batch Size')
mdx_batch_size_Label.grid(row=5,column=0,padx=0,pady=5)
mdx_batch_size_Option = ttk.Combobox(mdx_net_frame, value=BATCH_SIZE, width=MENU_COMBOBOX_WIDTH, textvariable=self.mdx_batch_size_var)
mdx_batch_size_Option.grid(row=6,column=0,padx=0,pady=5)
self.combobox_entry_validation(mdx_batch_size_Option, self.mdx_batch_size_var, REG_SHIFTS, BATCH_SIZE)
self.help_hints(mdx_batch_size_Label, text=BATCH_SIZE_HELP)
compensate_Label = self.menu_sub_LABEL_SET(mdx_net_frame, 'Volume Compensation')
compensate_Label.grid(row=7,column=0,padx=0,pady=5)
compensate_Option = ttk.Combobox(mdx_net_frame, value=VOL_COMPENSATION, width=MENU_COMBOBOX_WIDTH, textvariable=self.compensate_var)
compensate_Option.grid(row=8,column=0,padx=0,pady=5)
self.combobox_entry_validation(compensate_Option, self.compensate_var, REG_COMPENSATION, VOL_COMPENSATION)
self.help_hints(compensate_Label, text=COMPENSATE_HELP)
chunks_Label = self.menu_sub_LABEL_SET(mdx_net_frame, 'Chunks')
chunks_Label.grid(row=1,column=0,padx=0,pady=5)
chunks_Option = ttk.Combobox(mdx_net_frame, value=CHUNKS, width=MENU_COMBOBOX_WIDTH, textvariable=self.chunks_var)
chunks_Option.grid(row=2,column=0,padx=0,pady=5)
self.combobox_entry_validation(chunks_Option, self.chunks_var, REG_CHUNKS, CHUNKS)
self.help_hints(chunks_Label, text=CHUNKS_HELP)
margin_Label = self.menu_sub_LABEL_SET(mdx_net_frame, 'Chunk Margin')
margin_Label.grid(row=3,column=0,padx=0,pady=5)
margin_Option = ttk.Combobox(mdx_net_frame, value=MARGIN_SIZE, width=MENU_COMBOBOX_WIDTH, textvariable=self.margin_var)
margin_Option.grid(row=4,column=0,padx=0,pady=5)
self.combobox_entry_validation(margin_Option, self.margin_var, REG_MARGIN, MARGIN_SIZE)
self.help_hints(margin_Label, text=MARGIN_HELP)
margin_Label = self.menu_sub_LABEL_SET(mdx_net_frame, 'Chunk Margin')
margin_Label.grid(row=3,column=0,padx=0,pady=5)
margin_Option = ttk.Combobox(mdx_net_frame, value=MARGIN_SIZE, width=MENU_COMBOBOX_WIDTH, textvariable=self.margin_var)
margin_Option.grid(row=4,column=0,padx=0,pady=5)
self.combobox_entry_validation(margin_Option, self.margin_var, REG_MARGIN, MARGIN_SIZE)
self.help_hints(margin_Label, text=MARGIN_HELP)
compensate_Label = self.menu_sub_LABEL_SET(mdx_net_frame, 'Volume Compensation')
compensate_Label.grid(row=5,column=0,padx=0,pady=5)
compensate_Option = ttk.Combobox(mdx_net_frame, value=VOL_COMPENSATION, width=MENU_COMBOBOX_WIDTH, textvariable=self.compensate_var)
compensate_Option.grid(row=6,column=0,padx=0,pady=5)
self.combobox_entry_validation(compensate_Option, self.compensate_var, REG_COMPENSATION, VOL_COMPENSATION)
self.help_hints(compensate_Label, text=COMPENSATE_HELP)
is_chunk_mdxnet_Option = ttk.Checkbutton(mdx_net_frame, text='Enable Chunks', width=MDX_CHECKBOXS_WIDTH, variable=self.is_chunk_mdxnet_var, command=chunks_toggle)
is_chunk_mdxnet_Option.grid(row=10,column=0,padx=0,pady=0)
self.help_hints(is_chunk_mdxnet_Option, text=IS_CHUNK_MDX_NET_HELP)
is_denoise_Option = ttk.Checkbutton(mdx_net_frame, text='Denoise Output', width=MDX_CHECKBOXS_WIDTH, variable=self.is_denoise_var)
is_denoise_Option.grid(row=8,column=0,padx=0,pady=0)
is_denoise_Option.grid(row=11,column=0,padx=0,pady=0)
self.help_hints(is_denoise_Option, text=IS_DENOISE_HELP)
is_invert_spec_Option = ttk.Checkbutton(mdx_net_frame, text='Spectral Inversion', width=MDX_CHECKBOXS_WIDTH, variable=self.is_invert_spec_var)
is_invert_spec_Option.grid(row=9,column=0,padx=0,pady=0)
is_invert_spec_Option.grid(row=12,column=0,padx=0,pady=0)
self.help_hints(is_invert_spec_Option, text=IS_INVERT_SPEC_HELP)
clear_mdx_cache_Button = ttk.Button(mdx_net_frame, text='Clear Auto-Set Cache', command=lambda:self.clear_cache(MDX_ARCH_TYPE))
clear_mdx_cache_Button.grid(row=10,column=0,padx=0,pady=5)
clear_mdx_cache_Button.grid(row=13,column=0,padx=0,pady=5)
self.help_hints(clear_mdx_cache_Button, text=CLEAR_CACHE_HELP)
open_mdx_model_dir_Button = ttk.Button(mdx_net_frame, text='Open MDX-Net Models Folder', command=lambda:OPEN_FILE_func(MDX_MODELS_DIR))
open_mdx_model_dir_Button.grid(row=11,column=0,padx=0,pady=5)
open_mdx_model_dir_Button.grid(row=14,column=0,padx=0,pady=5)
mdx_return_Button = ttk.Button(mdx_net_frame, text=BACK_TO_MAIN_MENU, command=lambda:(self.menu_advanced_mdx_options_close_window(), self.check_is_menu_settings_open()))
mdx_return_Button.grid(row=12,column=0,padx=0,pady=5)
mdx_return_Button.grid(row=15,column=0,padx=0,pady=5)
mdx_close_Button = ttk.Button(mdx_net_frame, text='Close Window', command=lambda:self.menu_advanced_mdx_options_close_window())
mdx_close_Button.grid(row=13,column=0,padx=0,pady=5)
mdx_close_Button.grid(row=16,column=0,padx=0,pady=5)
chunks_toggle()
self.menu_placement(mdx_net_opt, "Advanced MDX-Net Options", is_help_hints=True, close_function=self.menu_advanced_mdx_options_close_window)
@@ -3197,26 +3273,44 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
def pop_up_mdx_model(self, mdx_model_hash, model_path):
"""Opens MDX-Net model settings"""
is_onnx_model = True
is_compatible_model = True
is_ckpt = False
primary_stem = VOCAL_STEM
try:
model = onnx.load(model_path)
model_shapes = [[d.dim_value for d in _input.type.tensor_type.shape.dim] for _input in model.graph.input][0]
dim_f = model_shapes[2]
dim_t = int(math.log(model_shapes[3], 2))
if model_path.endswith(ONNX):
model = onnx.load(model_path)
model_shapes = [[d.dim_value for d in _input.type.tensor_type.shape.dim] for _input in model.graph.input][0]
dim_f = model_shapes[2]
dim_t = int(math.log(model_shapes[3], 2))
n_fft = '6144'
if model_path.endswith(CKPT):
is_ckpt = True
model_params = torch.load(model_path, map_location=lambda storage, loc: storage)['hyper_parameters']
print('model_params: ', model_params)
dim_f = model_params['dim_f']
dim_t = int(math.log(model_params['dim_t'], 2))
n_fft = model_params['n_fft']
for stem in STEM_SET_MENU:
if model_params['target_name'] == stem.lower():
primary_stem = INST_STEM if model_params['target_name'] == OTHER_STEM.lower() else stem
except Exception as e:
dim_f = 0
dim_t = 0
self.error_dialoge(INVALID_ONNX_MODEL_ERROR)
self.error_log_var.set("{}".format(error_text('MDX-Net Model Settings', e)))
is_onnx_model = False
if is_onnx_model:
is_compatible_model = False
self.mdx_model_params = None
if is_compatible_model:
mdx_model_set = Toplevel(root)
mdx_n_fft_scale_set_var = tk.StringVar(value='6144')
mdx_n_fft_scale_set_var = tk.StringVar(value=n_fft)
mdx_dim_f_set_var = tk.StringVar(value=dim_f)
mdx_dim_t_set_var = tk.StringVar(value=dim_t)
primary_stem_var = tk.StringVar(value='Vocals')
primary_stem_var = tk.StringVar(value=primary_stem)
mdx_compensate_var = tk.StringVar(value=1.035)
mdx_model_set_Frame = self.menu_FRAME_SET(mdx_model_set)
@@ -3270,6 +3364,11 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
stop_process_Button = ttk.Button(mdx_model_set_Frame, text="Cancel", command=lambda:cancel())
stop_process_Button.grid(row=17,column=0,padx=0,pady=0)
if is_ckpt:
mdx_dim_t_set_Option.configure(state=DISABLED)
mdx_dim_f_set_Option.configure(state=DISABLED)
mdx_n_fft_scale_set_Option.configure(state=DISABLED)
def pull_data():
mdx_model_params = {
'compensate': float(mdx_compensate_var.get()),
@@ -3304,7 +3403,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
vr_param_menu = Toplevel()
get_vr_params = lambda dir, ext:tuple(os.path.splitext(x)[0] for x in os.listdir(dir) if x.endswith(ext))
new_vr_params = get_vr_params(VR_PARAM_DIR, '.json')
new_vr_params = get_vr_params(VR_PARAM_DIR, JSON)
vr_model_param_var = tk.StringVar(value='None Selected')
vr_model_stem_var = tk.StringVar(value='Vocals')
@@ -3474,7 +3573,6 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
if user_refresh:
self.download_list_state()
self.download_list_fill()
for widget in self.download_center_Buttons:widget.configure(state=tk.NORMAL)
if refresh_list_Button:
@@ -3491,8 +3589,15 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.app_update_status_Text_var.set('UVR Version Current')
else:
is_new_update = True
self.app_update_status_Text_var.set(f"Update Found: {self.lastest_version}")
self.app_update_button_Text_var.set('Click Here to Update')
is_beta_version = True if self.lastest_version == PREVIOUS_PATCH_WIN and BETA_VERSION in current_patch else False
if is_beta_version:
self.app_update_status_Text_var.set(f"Roll Back: {self.lastest_version}")
self.app_update_button_Text_var.set('Click Here to Roll Back')
else:
self.app_update_status_Text_var.set(f"Update Found: {self.lastest_version}")
self.app_update_button_Text_var.set('Click Here to Update')
if OPERATING_SYSTEM == "Windows":
self.download_update_link_var.set('{}{}{}'.format(UPDATE_REPO, self.lastest_version, application_extension))
self.download_update_path_var.set(os.path.join(BASE_PATH, f'{self.lastest_version}{application_extension}'))
@@ -3502,7 +3607,8 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.download_update_link_var.set(UPDATE_LINUX_REPO)
if not user_refresh:
self.command_Text.write(f"\n\nNew Update Found: {self.lastest_version}\n\nClick the update button in the \"Settings\" menu to download and install!")
if not is_beta_version:
self.command_Text.write(f"\n\nNew Update Found: {self.lastest_version}\n\nClick the update button in the \"Settings\" menu to download and install!")
self.download_model_settings()
@@ -3602,6 +3708,8 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.vr_hash_MAPPER = json.load(urllib.request.urlopen(VR_MODEL_DATA_LINK))
self.mdx_hash_MAPPER = json.load(urllib.request.urlopen(MDX_MODEL_DATA_LINK))
self.mdx_name_select_MAPPER = json.load(urllib.request.urlopen(MDX_MODEL_NAME_DATA_LINK))
self.demucs_name_select_MAPPER = json.load(urllib.request.urlopen(DEMUCS_MODEL_NAME_DATA_LINK))
try:
vr_hash_MAPPER_dump = json.dumps(self.vr_hash_MAPPER, indent=4)
@@ -3611,7 +3719,20 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
mdx_hash_MAPPER_dump = json.dumps(self.mdx_hash_MAPPER, indent=4)
with open(MDX_HASH_JSON, "w") as outfile:
outfile.write(mdx_hash_MAPPER_dump)
mdx_name_select_MAPPER_dump = json.dumps(self.mdx_name_select_MAPPER, indent=4)
with open(MDX_MODEL_NAME_SELECT, "w") as outfile:
outfile.write(mdx_name_select_MAPPER_dump)
demucs_name_select_MAPPER_dump = json.dumps(self.demucs_name_select_MAPPER, indent=4)
with open(DEMUCS_MODEL_NAME_SELECT, "w") as outfile:
outfile.write(demucs_name_select_MAPPER_dump)
except Exception as e:
# self.vr_hash_MAPPER = load_model_hash_data(VR_HASH_JSON)
# self.mdx_hash_MAPPER = load_model_hash_data(MDX_HASH_JSON)
# self.mdx_name_select_MAPPER = load_model_hash_data(MDX_MODEL_NAME_SELECT)
# self.demucs_name_select_MAPPER = load_model_hash_data(DEMUCS_MODEL_NAME_SELECT)
self.error_log_var.set(e)
print(e)
@@ -3813,11 +3934,11 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
def fix_names(file, name_mapper: dict):return tuple(new_name for (old_name, new_name) in name_mapper.items() if file in old_name)
new_vr_models = self.get_files_from_dir(VR_MODELS_DIR, '.pth')
new_mdx_models = self.get_files_from_dir(MDX_MODELS_DIR, '.onnx')
new_demucs_models = self.get_files_from_dir(DEMUCS_MODELS_DIR, ('.ckpt', '.gz', '.th')) + self.get_files_from_dir(DEMUCS_NEWER_REPO_DIR, '.yaml')
new_ensembles_found = self.get_files_from_dir(ENSEMBLE_CACHE_DIR, '.json')
new_settings_found = self.get_files_from_dir(SETTINGS_CACHE_DIR, '.json')
new_vr_models = self.get_files_from_dir(VR_MODELS_DIR, PTH)
new_mdx_models = self.get_files_from_dir(MDX_MODELS_DIR, (ONNX, CKPT), is_mdxnet=True)
new_demucs_models = self.get_files_from_dir(DEMUCS_MODELS_DIR, (CKPT, '.gz', '.th')) + self.get_files_from_dir(DEMUCS_NEWER_REPO_DIR, YAML)
new_ensembles_found = self.get_files_from_dir(ENSEMBLE_CACHE_DIR, JSON)
new_settings_found = self.get_files_from_dir(SETTINGS_CACHE_DIR, JSON)
new_models_found = new_vr_models + new_mdx_models + new_demucs_models
is_online = self.is_online_model_menu
@@ -3850,8 +3971,8 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.model_data_table = []
vr_model_list = loop_directories(self.vr_model_Option, self.vr_model_var, new_vr_models, VR_ARCH_TYPE, name_mapper=None)
mdx_model_list = loop_directories(self.mdx_net_model_Option, self.mdx_net_model_var, new_mdx_models, MDX_ARCH_TYPE, name_mapper=MDX_NAME_SELECT)
demucs_model_list = loop_directories(self.demucs_model_Option, self.demucs_model_var, new_demucs_models, DEMUCS_ARCH_TYPE, name_mapper=DEMUCS_NAME_SELECT)
mdx_model_list = loop_directories(self.mdx_net_model_Option, self.mdx_net_model_var, new_mdx_models, MDX_ARCH_TYPE, name_mapper=self.mdx_name_select_MAPPER)
demucs_model_list = loop_directories(self.demucs_model_Option, self.demucs_model_var, new_demucs_models, DEMUCS_ARCH_TYPE, name_mapper=self.demucs_name_select_MAPPER)
self.ensemble_model_list = vr_model_list + mdx_model_list + demucs_model_list
self.last_found_models = new_models_found
@@ -3903,10 +4024,10 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
if self.chosen_process_method_var.get() == MDX_ARCH_TYPE:
self.mdx_net_model_Label_place()
self.mdx_net_model_Option_place()
self.chunks_Label_place()
self.chunks_Option_place()
self.margin_Label_place()
self.margin_Option_place()
self.mdx_batch_size_Label_place()
self.mdx_batch_size_Option_place()
self.compensate_Label_place()
self.compensate_Option_place()
general_shared_Buttons_place()
stem_save_Options_place()
no_ensemble_shared()
@@ -4276,9 +4397,9 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.active_processing_thread.start()
def process_button_init(self):
self.command_Text.clear()
self.conversion_Button_Text_var.set(WAIT_PROCESSING)
self.conversion_Button.configure(state=tk.DISABLED)
self.command_Text.clear()
def process_get_baseText(self, total_files, file_num):
"""Create the base text for the command widget"""
@@ -4323,7 +4444,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.conversion_Button_Text_var.set(START_PROCESSING)
self.conversion_Button.configure(state=tk.NORMAL)
self.progress_bar_main_var.set(0)
if error:
error_message_box_text = f'{error_dialouge(error)}{ERROR_OCCURED[1]}'
confirm = tk.messagebox.askyesno(parent=root,
@@ -4564,7 +4685,8 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
audio_file_base = f"{file_num}_{os.path.splitext(os.path.basename(audio_file))[0]}"
audio_file_base = audio_file_base if not self.is_testing_audio_var.get() or is_ensemble else f"{round(time.time())}_{audio_file_base}"
audio_file_base = audio_file_base if not is_ensemble else f"{audio_file_base}_{current_model.model_basename}"
audio_file_base = audio_file_base if not self.is_add_model_name_var.get() else f"{audio_file_base}_{current_model.model_basename}"
if not is_ensemble:
audio_file_base = audio_file_base if not self.is_add_model_name_var.get() else f"{audio_file_base}_{current_model.model_basename}"
if self.is_create_model_folder_var.get() and not is_ensemble:
export_path = os.path.join(Path(self.export_path_var.get()), current_model.model_basename, os.path.splitext(os.path.basename(audio_file))[0])
@@ -4583,12 +4705,14 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
'list_all_models': self.all_models,
'is_ensemble_master': is_ensemble,
'is_4_stem_ensemble': True if self.ensemble_main_stem_var.get() == FOUR_STEM_ENSEMBLE and is_ensemble else False}
if current_model.process_method == VR_ARCH_TYPE:
seperator = SeperateVR(current_model, process_data)
if current_model.process_method == MDX_ARCH_TYPE:
seperator = SeperateMDX(current_model, process_data)
if current_model.process_method == DEMUCS_ARCH_TYPE:
seperator = SeperateDemucs(current_model, process_data)
seperator.seperate()
if is_ensemble:
@@ -4630,7 +4754,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
playsound(COMPLETE_CHIME) if self.is_task_complete_var.get() else None
self.process_end()
except Exception as e:
self.error_log_var.set("{}{}".format(error_text(self.chosen_process_method_var.get(), e), self.get_settings_list()))
self.command_Text.write(f'\n\n{PROCESS_FAILED}')
@@ -4658,7 +4782,8 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
for key, value in DEFAULT_DATA.items():
if not key in data.keys():
data = {**data, **{key:value}}
data['batch_size'] = DEF_OPT
## ADD_BUTTON
self.chosen_process_method_var = tk.StringVar(value=data['chosen_process_method'])
@@ -4691,6 +4816,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.chunks_demucs_var = tk.StringVar(value=data['chunks_demucs'])
self.margin_demucs_var = tk.StringVar(value=data['margin_demucs'])
self.is_chunk_demucs_var = tk.BooleanVar(value=data['is_chunk_demucs'])
self.is_chunk_mdxnet_var = tk.BooleanVar(value=data['is_chunk_mdxnet'])
self.is_primary_stem_only_Demucs_var = tk.BooleanVar(value=data['is_primary_stem_only_Demucs'])
self.is_secondary_stem_only_Demucs_var = tk.BooleanVar(value=data['is_secondary_stem_only_Demucs'])
self.is_split_mode_var = tk.BooleanVar(value=data['is_split_mode'])
@@ -4715,6 +4841,8 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.compensate_var = tk.StringVar(value=data['compensate'])
self.is_denoise_var = tk.BooleanVar(value=data['is_denoise'])
self.is_invert_spec_var = tk.BooleanVar(value=data['is_invert_spec'])
self.is_mixer_mode_var = tk.BooleanVar(value=data['is_mixer_mode'])
self.mdx_batch_size_var = tk.StringVar(value=data['mdx_batch_size'])
self.mdx_voc_inst_secondary_model_var = tk.StringVar(value=data['mdx_voc_inst_secondary_model'])
self.mdx_other_secondary_model_var = tk.StringVar(value=data['mdx_other_secondary_model'])
self.mdx_bass_secondary_model_var = tk.StringVar(value=data['mdx_bass_secondary_model'])
@@ -4765,8 +4893,11 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
for key, value in DEFAULT_DATA.items():
if not key in loaded_setting.keys():
loaded_setting = {**loaded_setting, **{key:value}}
loaded_setting['batch_size'] = DEF_OPT
if not process_method or process_method == VR_ARCH_PM:
is_ensemble = True if process_method == ENSEMBLE_MODE else False
if not process_method or process_method == VR_ARCH_PM or is_ensemble:
self.vr_model_var.set(loaded_setting['vr_model'])
self.aggression_setting_var.set(loaded_setting['aggression_setting'])
self.window_size_var.set(loaded_setting['window_size'])
@@ -4787,7 +4918,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.vr_bass_secondary_model_scale_var.set(loaded_setting['vr_bass_secondary_model_scale'])
self.vr_drums_secondary_model_scale_var.set(loaded_setting['vr_drums_secondary_model_scale'])
if not process_method or process_method == DEMUCS_ARCH_TYPE:
if not process_method or process_method == DEMUCS_ARCH_TYPE or is_ensemble:
self.demucs_model_var.set(loaded_setting['demucs_model'])
self.segment_var.set(loaded_setting['segment'])
self.overlap_var.set(loaded_setting['overlap'])
@@ -4795,6 +4926,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.chunks_demucs_var.set(loaded_setting['chunks_demucs'])
self.margin_demucs_var.set(loaded_setting['margin_demucs'])
self.is_chunk_demucs_var.set(loaded_setting['is_chunk_demucs'])
self.is_chunk_mdxnet_var.set(loaded_setting['is_chunk_mdxnet'])
self.is_primary_stem_only_Demucs_var.set(loaded_setting['is_primary_stem_only_Demucs'])
self.is_secondary_stem_only_Demucs_var.set(loaded_setting['is_secondary_stem_only_Demucs'])
self.is_split_mode_var.set(loaded_setting['is_split_mode'])
@@ -4814,13 +4946,15 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.is_demucs_pre_proc_model_activate_var.set(data['is_demucs_pre_proc_model_activate'])
self.is_demucs_pre_proc_model_inst_mix_var.set(data['is_demucs_pre_proc_model_inst_mix'])
if not process_method or process_method == MDX_ARCH_TYPE:
if not process_method or process_method == MDX_ARCH_TYPE or is_ensemble:
self.mdx_net_model_var.set(loaded_setting['mdx_net_model'])
self.chunks_var.set(loaded_setting['chunks'])
self.margin_var.set(loaded_setting['margin'])
self.compensate_var.set(loaded_setting['compensate'])
self.is_denoise_var.set(loaded_setting['is_denoise'])
self.is_invert_spec_var.set(loaded_setting['is_invert_spec'])
self.is_mixer_mode_var.set(loaded_setting['is_mixer_mode'])
self.mdx_batch_size_var.set(loaded_setting['mdx_batch_size'])
self.mdx_voc_inst_secondary_model_var.set(loaded_setting['mdx_voc_inst_secondary_model'])
self.mdx_other_secondary_model_var.set(loaded_setting['mdx_other_secondary_model'])
self.mdx_bass_secondary_model_var.set(loaded_setting['mdx_bass_secondary_model'])
@@ -4831,7 +4965,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
self.mdx_bass_secondary_model_scale_var.set(loaded_setting['mdx_bass_secondary_model_scale'])
self.mdx_drums_secondary_model_scale_var.set(loaded_setting['mdx_drums_secondary_model_scale'])
if not process_method:
if not process_method or is_ensemble:
self.is_save_all_outputs_ensemble_var.set(loaded_setting['is_save_all_outputs_ensemble'])
self.is_append_ensemble_name_var.set(loaded_setting['is_append_ensemble_name'])
self.chosen_audio_tool_var.set(loaded_setting['chosen_audio_tool'])
@@ -4889,6 +5023,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
'chunks_demucs': self.chunks_demucs_var.get(),
'margin_demucs': self.margin_demucs_var.get(),
'is_chunk_demucs': self.is_chunk_demucs_var.get(),
'is_chunk_mdxnet': self.is_chunk_mdxnet_var.get(),
'is_primary_stem_only_Demucs': self.is_primary_stem_only_Demucs_var.get(),
'is_secondary_stem_only_Demucs': self.is_secondary_stem_only_Demucs_var.get(),
'is_split_mode': self.is_split_mode_var.get(),
@@ -4910,7 +5045,9 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
'margin': self.margin_var.get(),
'compensate': self.compensate_var.get(),
'is_denoise': self.is_denoise_var.get(),
'is_invert_spec': self.is_invert_spec_var.get(),
'is_invert_spec': self.is_invert_spec_var.get(),
'is_mixer_mode': self.is_mixer_mode_var.get(),
'mdx_batch_size':self.mdx_batch_size_var.get(),
'mdx_voc_inst_secondary_model': self.mdx_voc_inst_secondary_model_var.get(),
'mdx_other_secondary_model': self.mdx_other_secondary_model_var.get(),
'mdx_bass_secondary_model': self.mdx_bass_secondary_model_var.get(),
@@ -4983,7 +5120,7 @@ class MainWindow(TkinterDnD.Tk if is_dnd_compatible else tk.Tk):
settings_list = '\n'.join(''.join(f"{key}: {value}") for key, value in settings_dict.items() if not key == 'user_code')
return f"\nFull Application Settings:\n\n{settings_list}"
def secondary_stem(stem):
"""Determines secondary stem"""

View File

@@ -12,6 +12,7 @@ from lib_v5.vr_network import nets_new
#from lib_v5.vr_network.model_param_init import ModelParameters
from pathlib import Path
from gui_data.constants import *
from gui_data.error_handling import *
import audioread
import gzip
import librosa
@@ -23,6 +24,8 @@ import torch
import warnings
import pydub
import soundfile as sf
import traceback
import lib_v5.mdxnet as MdxnetSet
if TYPE_CHECKING:
from UVR import ModelData
@@ -46,7 +49,10 @@ class SeperateAttributes:
self.is_4_stem_ensemble = process_data['is_4_stem_ensemble']
self.list_all_models = process_data['list_all_models']
self.process_iteration = process_data['process_iteration']
self.mixer_path = model_data.mixer_path
self.model_samplerate = model_data.model_samplerate
self.model_capacity = model_data.model_capacity
self.is_vr_51_model = model_data.is_vr_51_model
self.is_pre_proc_model = model_data.is_pre_proc_model
self.is_secondary_model_activated = model_data.is_secondary_model_activated if not self.is_pre_proc_model else False
self.is_secondary_model = model_data.is_secondary_model if not self.is_pre_proc_model else True
@@ -67,6 +73,7 @@ class SeperateAttributes:
self.primary_stem = model_data.primary_stem #
self.secondary_stem = model_data.secondary_stem #
self.is_invert_spec = model_data.is_invert_spec #
self.is_mixer_mode = model_data.is_mixer_mode #
self.secondary_model_scale = model_data.secondary_model_scale #
self.is_demucs_pre_proc_model_inst_mix = model_data.is_demucs_pre_proc_model_inst_mix #
self.primary_source_map = {}
@@ -94,21 +101,24 @@ class SeperateAttributes:
self.is_secondary_stem_only = True if self.secondary_stem == INST_STEM else False
if model_data.process_method == MDX_ARCH_TYPE:
self.is_mdx_ckpt = model_data.is_mdx_ckpt
self.primary_model_name, self.primary_sources = self.cached_source_callback(MDX_ARCH_TYPE, model_name=self.model_basename)
self.is_denoise = model_data.is_denoise
self.mdx_batch_size = model_data.mdx_batch_size
self.compensate = model_data.compensate
self.dim_f, self.dim_t = model_data.mdx_dim_f_set, 2**model_data.mdx_dim_t_set
self.n_fft = model_data.mdx_n_fft_scale_set
self.chunks = model_data.chunks
self.margin = model_data.margin
self.hop = 1024
self.n_bins = self.n_fft//2+1
self.chunk_size = self.hop * (self.dim_t-1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=False).to(cpu)
self.adjust = 1
self.dim_c = 4
out_c = self.dim_c
self.freq_pad = torch.zeros([1, out_c, self.n_bins-self.dim_f, self.dim_t]).to(cpu)
self.hop = 1024
if self.is_gpu_conversion >= 0 and torch.cuda.is_available():
self.device, self.run_type = torch.device('cuda:0'), ['CUDAExecutionProvider']
else:
self.device, self.run_type = torch.device('cpu'), ['CPUExecutionProvider']
if model_data.process_method == DEMUCS_ARCH_TYPE:
self.demucs_stems = model_data.demucs_stems if not main_process_method in [MDX_ARCH_TYPE, VR_ARCH_TYPE] else None
self.secondary_model_4_stem = model_data.secondary_model_4_stem
@@ -152,15 +162,14 @@ class SeperateAttributes:
self.is_post_process = model_data.is_post_process
self.is_gpu_conversion = model_data.is_gpu_conversion
self.batch_size = model_data.batch_size
self.crop_size = model_data.crop_size
self.window_size = model_data.window_size
self.input_high_end_h = None
self.post_process_threshold = model_data.post_process_threshold
self.aggressiveness = {'value': model_data.aggression_setting,
'split_bin': self.mp.param['band'][1]['crop_stop'],
'aggr_correction': self.mp.param.get('aggr_correction')}
def start_inference(self):
def start_inference_console_write(self):
if self.is_secondary_model and not self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_SEC(self.process_method, self.model_basename))
@@ -168,7 +177,7 @@ class SeperateAttributes:
if self.is_pre_proc_model:
self.write_to_console(INFERENCE_STEP_2_PRE(self.process_method, self.model_basename))
def running_inference(self, is_no_write=False):
def running_inference_console_write(self, is_no_write=False):
self.write_to_console(DONE, base_text='') if not is_no_write else None
self.set_progress_bar(0.05) if not is_no_write else None
@@ -180,6 +189,15 @@ class SeperateAttributes:
else:
self.write_to_console(INFERENCE_STEP_1)
def running_inference_progress_bar(self, length, is_match_mix=False):
if not is_match_mix:
self.progress_value += 1
if (0.8/length*self.progress_value) >= 0.8:
length = self.progress_value + 1
self.set_progress_bar(0.1, (0.8/length*self.progress_value))
def load_cached_sources(self, is_4_stem_demucs=False):
if self.is_secondary_model and not self.is_pre_proc_model:
@@ -222,31 +240,51 @@ class SeperateAttributes:
self.write_to_console(DONE, base_text='')
self.set_progress_bar(0.95)
def run_mixer(self, mix, sources):
try:
if self.is_mixer_mode and len(sources) == 4:
mixer = MdxnetSet.Mixer(self.device, self.mixer_path).eval()
with torch.no_grad():
mix = torch.tensor(mix, dtype=torch.float32)
sources_ = torch.tensor(sources).detach()
x = torch.cat([sources_, mix.unsqueeze(0)], 0)
sources_ = mixer(x)
final_source = np.array(sources_)
else:
final_source = sources
except Exception as e:
error_name = f'{type(e).__name__}'
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'{error_name}: "{e}"\n{traceback_text}"'
print('Mixer Failed: ', message)
final_source = sources
return final_source
class SeperateMDX(SeperateAttributes):
def seperate(self):
samplerate = 44100
if self.primary_model_name == self.model_basename and self.primary_sources:
self.primary_source, self.secondary_source = self.load_cached_sources()
else:
self.start_inference()
self.start_inference_console_write()
if self.is_gpu_conversion >= 0:
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
run_type = ['CUDAExecutionProvider'] if torch.cuda.is_available() else ['CPUExecutionProvider']
if self.is_mdx_ckpt:
model_params = torch.load(self.model_path, map_location=lambda storage, loc: storage)['hyper_parameters']
self.dim_c, self.hop = model_params['dim_c'], model_params['hop_length']
separator = MdxnetSet.ConvTDFNet(**model_params)
self.model_run = separator.load_from_checkpoint(self.model_path).to(self.device).eval()
else:
self.device = torch.device('cpu')
run_type = ['CPUExecutionProvider']
ort_ = ort.InferenceSession(self.model_path, providers=self.run_type)
self.model_run = lambda spek:ort_.run(None, {'input': spek.cpu().numpy()})[0]
self.onnx_model = ort.InferenceSession(self.model_path, providers=run_type)
self.running_inference()
self.initialize_model_settings()
self.running_inference_console_write()
mdx_net_cut = True if self.primary_stem in MDX_NET_FREQ_CUT else False
mix, raw_mix, samplerate = prepare_mix(self.audio_file, self.chunks, self.margin, mdx_net_cut=mdx_net_cut)
source = self.demix_base(mix)
source = self.demix_base(mix, is_ckpt=self.is_mdx_ckpt)[0]
self.write_to_console(DONE, base_text='')
if self.is_secondary_model_activated:
@@ -257,7 +295,7 @@ class SeperateMDX(SeperateAttributes):
self.write_to_console(f'{SAVING_STEM[0]}{self.primary_stem}{SAVING_STEM[1]}') if not self.is_secondary_model else None
primary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.primary_stem}).wav')
if not isinstance(self.primary_source, np.ndarray):
self.primary_source = spec_utils.normalize(source[0], self.is_normalization).T
self.primary_source = spec_utils.normalize(source, self.is_normalization).T
self.primary_source_map = {self.primary_stem: self.primary_source}
self.write_audio(primary_stem_path, self.primary_source, samplerate, self.secondary_source_primary)
@@ -266,7 +304,7 @@ class SeperateMDX(SeperateAttributes):
secondary_stem_path = os.path.join(self.export_path, f'{self.audio_file_base}_({self.secondary_stem}).wav')
if not isinstance(self.secondary_source, np.ndarray):
raw_mix = self.demix_base(raw_mix, is_match_mix=True)[0] if mdx_net_cut else raw_mix
self.secondary_source, raw_mix = spec_utils.normalize_two_stem(source[0]*self.compensate, raw_mix, self.is_normalization)
self.secondary_source, raw_mix = spec_utils.normalize_two_stem(source*self.compensate, raw_mix, self.is_normalization)
if self.is_invert_spec:
self.secondary_source = spec_utils.invert_stem(raw_mix, self.secondary_source)
@@ -277,7 +315,6 @@ class SeperateMDX(SeperateAttributes):
self.write_audio(secondary_stem_path, self.secondary_source, samplerate, self.secondary_source_secondary)
torch.cuda.empty_cache()
secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
self.cache_source(secondary_sources)
@@ -285,53 +322,73 @@ class SeperateMDX(SeperateAttributes):
if self.is_secondary_model:
return secondary_sources
def demix_base(self, mix, is_match_mix=False):
chunked_sources = []
def initialize_model_settings(self):
self.n_bins = self.n_fft//2+1
self.trim = self.n_fft//2
self.chunk_size = self.hop * (self.dim_t-1)
self.window = torch.hann_window(window_length=self.n_fft, periodic=False).to(self.device)
self.freq_pad = torch.zeros([1, self.dim_c, self.n_bins-self.dim_f, self.dim_t]).to(self.device)
self.gen_size = self.chunk_size-2*self.trim
for slice in mix:
self.progress_value += 1
self.set_progress_bar(0.1, (0.8/len(mix)*self.progress_value)) if not is_match_mix else None
cmix = mix[slice]
sources = []
def initialize_mix(self, mix, is_ckpt=False):
if is_ckpt:
pad = self.gen_size + self.trim - ((mix.shape[-1]) % self.gen_size)
mixture = np.concatenate((np.zeros((2, self.trim), dtype='float32'),mix, np.zeros((2, pad), dtype='float32')), 1)
num_chunks = mixture.shape[-1] // self.gen_size
mix_waves = [mixture[:, i * self.gen_size: i * self.gen_size + self.chunk_size] for i in range(num_chunks)]
else:
mix_waves = []
n_sample = cmix.shape[1]
trim = self.n_fft//2
gen_size = self.chunk_size-2*trim
pad = gen_size - n_sample%gen_size
mix_p = np.concatenate((np.zeros((2,trim)), cmix, np.zeros((2,pad)), np.zeros((2,trim))), 1)
n_sample = mix.shape[1]
pad = self.gen_size - n_sample%self.gen_size
mix_p = np.concatenate((np.zeros((2,self.trim)), mix, np.zeros((2,pad)), np.zeros((2,self.trim))), 1)
i = 0
while i < n_sample + pad:
waves = np.array(mix_p[:, i:i+self.chunk_size])
mix_waves.append(waves)
i += gen_size
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
with torch.no_grad():
_ort = self.onnx_model if not is_match_mix else None
adjust = 1
spek = self.stft(mix_waves)*adjust
i += self.gen_size
if not is_match_mix:
if self.is_denoise:
spec_pred = -_ort.run(None, {'input': -spek.cpu().numpy()})[0]*0.5+_ort.run(None, {'input': spek.cpu().numpy()})[0]*0.5
else:
spec_pred = _ort.run(None, {'input': spek.cpu().numpy()})[0]
else:
spec_pred = spek.cpu().numpy()
mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(self.device)
tar_waves = self.istft(torch.tensor(spec_pred))#.cpu()
tar_signal = tar_waves[:,:,trim:-trim].transpose(0,1).reshape(2, -1).numpy()[:, :-pad]
return mix_waves, pad
def demix_base(self, mix, is_ckpt=False, is_match_mix=False):
chunked_sources = []
for slice in mix:
sources = []
tar_waves_ = []
mix_p = mix[slice]
mix_waves, pad = self.initialize_mix(mix_p, is_ckpt=is_ckpt)
mix_waves = mix_waves.split(self.mdx_batch_size)
pad = mix_p.shape[-1] if is_ckpt else -pad
with torch.no_grad():
for mix_wave in mix_waves:
self.running_inference_progress_bar(len(mix)*len(mix_waves), is_match_mix=is_match_mix)
tar_waves = self.run_model(mix_wave, is_ckpt=is_ckpt, is_match_mix=is_match_mix)
tar_waves_.append(tar_waves)
tar_waves_ = np.vstack(tar_waves_)[:, :, self.trim:-self.trim] if is_ckpt else tar_waves_
tar_waves = np.concatenate(tar_waves_, axis=-1)[:, :pad]
start = 0 if slice == 0 else self.margin
end = None if slice == list(mix.keys())[::-1][0] else -self.margin
if self.margin == 0:
end = None
sources.append(tar_signal[:,start:end]*(1/adjust))
end = None if slice == list(mix.keys())[::-1][0] or self.margin == 0 else -self.margin
sources.append(tar_waves[:,start:end]*(1/self.adjust))
chunked_sources.append(sources)
sources = np.concatenate(chunked_sources, axis=-1)
if not is_match_mix:
del self.onnx_model
return sources
def run_model(self, mix, is_ckpt=False, is_match_mix=False):
spek = self.stft(mix.to(self.device))*self.adjust
spek[:, :, :3, :] *= 0
if is_match_mix:
spec_pred = spek.cpu().numpy()
else:
spec_pred = -self.model_run(-spek)*0.5+self.model_run(spek)*0.5 if self.is_denoise else self.model_run(spek)
if is_ckpt:
return self.istft(spec_pred).cpu().detach().numpy()
else:
return self.istft(torch.tensor(spec_pred).to(self.device)).to(cpu)[:,:,self.trim:-self.trim].transpose(0,1).reshape(2, -1).numpy()
def stft(self, x):
x = x.reshape([-1, self.chunk_size])
@@ -343,11 +400,10 @@ class SeperateMDX(SeperateAttributes):
def istft(self, x, freq_pad=None):
freq_pad = self.freq_pad.repeat([x.shape[0],1,1,1]) if freq_pad is None else freq_pad
x = torch.cat([x, freq_pad], -2)
c = 2
x = x.reshape([-1,c,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t])
x = x.reshape([-1,2,2,self.n_bins,self.dim_t]).reshape([-1,2,self.n_bins,self.dim_t])
x = x.permute([0,2,3,1])
x = torch.istft(x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True)
return x.reshape([-1,c,self.chunk_size])
return x.reshape([-1,2,self.chunk_size])
class SeperateDemucs(SeperateAttributes):
@@ -371,7 +427,7 @@ class SeperateDemucs(SeperateAttributes):
source = self.primary_sources
self.load_cached_sources(is_4_stem_demucs=True)
else:
self.start_inference()
self.start_inference_console_write()
if self.is_gpu_conversion >= 0:
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
@@ -405,22 +461,25 @@ class SeperateDemucs(SeperateAttributes):
mix_no_voc = process_secondary_model(self.pre_proc_model, self.process_data, is_pre_proc_model=True)
inst_mix, inst_raw_mix, inst_samplerate = prepare_mix(mix_no_voc[INST_STEM], self.chunks_demucs, self.margin_demucs)
self.process_iteration()
self.running_inference(is_no_write=is_no_write)
self.running_inference_console_write(is_no_write=is_no_write)
inst_source = self.demix_demucs(inst_mix)
inst_source = self.run_mixer(inst_raw_mix, inst_source)
self.process_iteration()
self.running_inference(is_no_write=is_no_write) if not self.pre_proc_model else None
self.running_inference_console_write(is_no_write=is_no_write) if not self.pre_proc_model else None
mix, raw_mix, samplerate = prepare_mix(self.audio_file, self.chunks_demucs, self.margin_demucs)
if self.primary_model_name == self.model_basename and isinstance(self.primary_sources, np.ndarray) and self.pre_proc_model:
source = self.primary_sources
else:
source = self.demix_demucs(mix)
source = self.run_mixer(raw_mix, source)
self.write_to_console(DONE, base_text='')
del self.demucs
torch.cuda.empty_cache()
if isinstance(inst_source, np.ndarray):
source_reshape = spec_utils.reshape_sources(inst_source[self.demucs_source_map[VOCAL_STEM]], source[self.demucs_source_map[VOCAL_STEM]])
inst_source[self.demucs_source_map[VOCAL_STEM]] = source_reshape
@@ -431,6 +490,7 @@ class SeperateDemucs(SeperateAttributes):
self.demucs_source_map = DEMUCS_2_SOURCE_MAPPER
else:
self.demucs_source_map = DEMUCS_6_SOURCE_MAPPER if len(source) == 6 else DEMUCS_4_SOURCE_MAPPER
if len(source) == 6 and self.process_data['is_ensemble_master'] or len(source) == 6 and self.is_secondary_model:
is_no_piano_guitar = True
six_stem_other_source = list(source)
@@ -445,7 +505,6 @@ class SeperateDemucs(SeperateAttributes):
self.cache_source(source)
for stem_name, stem_value in self.demucs_source_map.items():
if self.is_secondary_model_activated and not self.is_secondary_model and not stem_value >= 4:
if self.secondary_model_4_stem[stem_value]:
model_scale = self.secondary_model_4_stem_scale[stem_value]
@@ -520,9 +579,7 @@ class SeperateDemucs(SeperateAttributes):
if self.is_demucs_pre_proc_model_inst_mix and self.pre_proc_model and not self.is_4_stem_ensemble:
secondary_save(f"{self.secondary_stem} {INST_STEM}", source, raw_mixture=inst_raw_mix, is_inst_mixture=True)
torch.cuda.empty_cache()
secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
self.cache_source(secondary_sources)
@@ -583,11 +640,10 @@ class SeperateDemucs(SeperateAttributes):
class SeperateVR(SeperateAttributes):
def seperate(self):
if self.primary_model_name == self.model_basename and self.primary_sources:
self.primary_source, self.secondary_source = self.load_cached_sources()
else:
self.start_inference()
self.start_inference_console_write()
if self.is_gpu_conversion >= 0:
if OPERATING_SYSTEM == 'Darwin':
device = torch.device('mps' if torch.backends.mps.is_available() else 'cpu')
@@ -595,32 +651,27 @@ class SeperateVR(SeperateAttributes):
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
nn_arch_sizes = [
31191, # default
33966, 56817, 218409, 123821, 123812, 129605, 537238, 537227]
33966, 56817, 123821, 123812, 129605, 218409, 537238, 537227]
vr_5_1_models = [56817, 218409]
model_size = math.ceil(os.stat(self.model_path).st_size / 1024)
nn_architecture = min(nn_arch_sizes, key=lambda x:abs(x-model_size))
nn_arch_size = min(nn_arch_sizes, key=lambda x:abs(x-model_size))
if nn_architecture in vr_5_1_models:
model = nets_new.CascadedNet(self.mp.param['bins'] * 2, nn_architecture)
inference = self.inference_vr_new
if nn_arch_size in vr_5_1_models or self.is_vr_51_model:
self.model_run = nets_new.CascadedNet(self.mp.param['bins'] * 2, nn_arch_size, nout=self.model_capacity[0], nout_lstm=self.model_capacity[1])
else:
model = nets.determine_model_capacity(self.mp.param['bins'] * 2, nn_architecture)
inference = self.inference_vr
self.model_run = nets.determine_model_capacity(self.mp.param['bins'] * 2, nn_arch_size)
self.model_run.load_state_dict(torch.load(self.model_path, map_location=cpu))
self.model_run.to(device)
model.load_state_dict(torch.load(self.model_path, map_location=device))
model.to(device)
self.running_inference()
y_spec, v_spec = inference(self.loading_mix(), device, model, self.aggressiveness)
self.running_inference_console_write()
y_spec, v_spec = self.inference_vr(self.loading_mix(), device, self.aggressiveness)
self.write_to_console(DONE, base_text='')
del model
if self.is_secondary_model_activated:
if self.secondary_model:
self.secondary_source_primary, self.secondary_source_secondary = process_secondary_model(self.secondary_model, self.process_data, main_process_method=self.process_method)
@@ -649,9 +700,8 @@ class SeperateVR(SeperateAttributes):
self.secondary_source_map = {self.secondary_stem: self.secondary_source}
self.write_audio(secondary_stem_path, self.secondary_source, 44100, self.secondary_source_secondary)
torch.cuda.empty_cache()
secondary_sources = {**self.primary_source_map, **self.secondary_source_map}
self.cache_source(secondary_sources)
@@ -696,80 +746,20 @@ class SeperateVR(SeperateAttributes):
return X_spec
def inference_vr(self, X_spec, device, model, aggressiveness):
def _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness):
model.eval()
total_iterations = sum([n_window]) if not self.is_tta else sum([n_window])*2
with torch.no_grad():
preds = []
for i in range(n_window):
self.progress_value +=1
self.set_progress_bar(0.1, 0.8/total_iterations*self.progress_value)
start = i * roi_size
X_mag_window = X_mag_pad[None, :, :, start:start + self.window_size]
X_mag_window = torch.from_numpy(X_mag_window).to(device)
pred = model.predict(X_mag_window, aggressiveness)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
return pred
X_mag, X_phase = spec_utils.preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, self.window_size, model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness)
pred = pred[:, :, :n_frame]
if self.is_tta:
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred_tta = _execute(X_mag_pad, roi_size, n_window, device, model, aggressiveness)
pred_tta = pred_tta[:, :, roi_size // 2:]
pred_tta = pred_tta[:, :, :n_frame]
pred, X_mag, X_phase = (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
else:
pred, X_mag, X_phase = pred * coef, X_mag, np.exp(1.j * X_phase)
if self.is_post_process:
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv, thres=self.post_process_threshold)
y_spec = pred * X_phase
v_spec = X_spec - y_spec
return y_spec, v_spec
def inference_vr_new(self, X_spec, device, model, aggressiveness):
def inference_vr(self, X_spec, device, aggressiveness):
def _execute(X_mag_pad, roi_size):
X_dataset = []
patches = (X_mag_pad.shape[2] - 2 * model.offset) // roi_size
patches = (X_mag_pad.shape[2] - 2 * self.model_run.offset) // roi_size
total_iterations = patches//self.batch_size if not self.is_tta else (patches//self.batch_size)*2
for i in range(patches):
start = i * roi_size
X_mag_crop = X_mag_pad[:, :, start:start + self.crop_size]
X_dataset.append(X_mag_crop)
X_mag_window = X_mag_pad[:, :, start:start + self.window_size]
X_dataset.append(X_mag_window)
X_dataset = np.asarray(X_dataset)
model.eval()
self.model_run.eval()
with torch.no_grad():
mask = []
# To reduce the overhead, dataloader is not used.
for i in range(0, patches, self.batch_size):
self.progress_value += 1
if self.progress_value >= total_iterations:
@@ -777,33 +767,37 @@ class SeperateVR(SeperateAttributes):
self.set_progress_bar(0.1, 0.8/total_iterations*self.progress_value)
X_batch = X_dataset[i: i + self.batch_size]
X_batch = torch.from_numpy(X_batch).to(device)
pred = model.predict_mask(X_batch)
pred = self.model_run.predict_mask(X_batch)
if not pred.size()[3] > 0:
raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR])
pred = pred.detach().cpu().numpy()
pred = np.concatenate(pred, axis=2)
mask.append(pred)
if len(mask) == 0:
raise Exception(ERROR_MAPPER[WINDOW_SIZE_ERROR])
mask = np.concatenate(mask, axis=2)
return mask
def postprocess(mask, X_mag, X_phase, aggressiveness):
def postprocess(mask, X_mag, X_phase):
if self.primary_stem == VOCAL_STEM:
mask = (1.0 - spec_utils.adjust_aggr(mask, True, aggressiveness))
else:
mask = spec_utils.adjust_aggr(mask, False, aggressiveness)
is_non_accom_stem = False
for stem in NON_ACCOM_STEMS:
if stem == self.primary_stem:
is_non_accom_stem = True
mask = spec_utils.adjust_aggr(mask, is_non_accom_stem, aggressiveness)
if self.is_post_process:
mask = spec_utils.merge_artifacts(mask)
mask = spec_utils.merge_artifacts(mask, thres=self.post_process_threshold)
y_spec = mask * X_mag * np.exp(1.j * X_phase)
v_spec = (1 - mask) * X_mag * np.exp(1.j * X_phase)
return y_spec, v_spec
X_mag, X_phase = spec_utils.preprocess(X_spec)
n_frame = X_mag.shape[2]
pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, self.crop_size, model.offset)
pad_l, pad_r, roi_size = spec_utils.make_padding(n_frame, self.window_size, self.model_run.offset)
X_mag_pad = np.pad(X_mag, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
X_mag_pad /= X_mag_pad.max()
mask = _execute(X_mag_pad, roi_size)
@@ -819,7 +813,7 @@ class SeperateVR(SeperateAttributes):
else:
mask = mask[:, :, :n_frame]
y_spec, v_spec = postprocess(mask, X_mag, X_phase, aggressiveness)
y_spec, v_spec = postprocess(mask, X_mag, X_phase)
return y_spec, v_spec
@@ -889,6 +883,7 @@ def prepare_mix(mix, chunk_set, margin_set, mdx_net_cut=False, is_missing_mix=Fa
margin = margin_set
chunk_size = chunk_set*44100
assert not margin == 0, 'margin cannot be zero!'
if margin > chunk_size:
margin = chunk_size
if chunk_set == 0 or samples < chunk_size:
@@ -941,4 +936,4 @@ def save_format(audio_path, save_format, mp3_bit_set):
try:
os.remove(audio_path)
except Exception as e:
print(e)
print(e)