init
This commit is contained in:
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
/venv
|
||||
52
README.md
Normal file
52
README.md
Normal file
@@ -0,0 +1,52 @@
|
||||
# Whisper-FastAPI
|
||||
|
||||
Whisper-FastAPI is a very simple Python FastAPI interface for konele and OpenAI services. It is based on the `faster-whisper` project and provides an API for konele-like interface, where translations and transcriptions can be obtained by connecting over websockets or POST requests.
|
||||
|
||||
## Features
|
||||
|
||||
- **Translation and Transcription**: The application provides an API for konele service, where translations and transcriptions can be obtained by connecting over websockets or POST requests.
|
||||
- **Language Support**: If the target language is English, then the application will translate any source language to English.
|
||||
- **Websocket and POST Method Support**: The project supports a websocket (`/konele/ws`) and a POST method to `/konele/post`.
|
||||
- **Audio Transcriptions**: The `/v1/audio/transcriptions` endpoint allows users to upload an audio file and receive transcription in response, with an optional `response_type` parameter. The `response_type` can be 'json', 'text', 'tsv', 'srt', and 'vtt'.
|
||||
- **Simplified Chinese**: The traditional Chinese will be automatically convert to simplified Chinese for konele using `opencc` library.
|
||||
|
||||
## Usage
|
||||
|
||||
### Konele Voice Typing
|
||||
|
||||
For konele voice typing, you can use either the websocket endpoint or the POST method endpoint.
|
||||
|
||||
- **Websocket**: Connect to the websocket at `/konele/ws` and send audio data. The server will respond with the transcription or translation.
|
||||
- **POST Method**: Send a POST request to `/konele/post` with the audio data in the body. The server will respond with the transcription or translation.
|
||||
|
||||
You can also use the demo I have created to quickly test the effect at <https://yongyuancv.cn/konele/ws> and <https://yongyuancv.cn/konele/post>
|
||||
|
||||
### OpenAI Whisper Service
|
||||
|
||||
To use the service that matches the structure of the OpenAI Whisper service, send a POST request to `/v1/audio/transcriptions` with an audio file. The server will respond with the transcription in the format specified by the `response_type` parameter.
|
||||
|
||||
You can also use the demo I have created to quickly test the effect at <https://yongyuancv.cn/v1/audio/transcriptions>
|
||||
|
||||
My demo is using the large-v2 model on RTX3060.
|
||||
|
||||
## Getting Started
|
||||
|
||||
To run the application, you need to have Python installed on your machine. You can then clone the repository and install the required dependencies.
|
||||
|
||||
```bash
|
||||
git clone https://github.com/heimoshuiyu/whisper-fastapi.git
|
||||
cd whisper-fastapi
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
You can then run the application using the following command: (model will be download from huggingface if not exists in cache dir)
|
||||
|
||||
```bash
|
||||
python main.py --host 0.0.0.0 --port 5000 --model large-v2
|
||||
```
|
||||
|
||||
This will start the application on `http://<your-ip-address>:5000`.
|
||||
|
||||
## Limitation
|
||||
|
||||
Defect: Due to the synchronous nature of inference, this API can actually only handle one request at a time.
|
||||
5
requirements.txt
Normal file
5
requirements.txt
Normal file
@@ -0,0 +1,5 @@
|
||||
python-multipart
|
||||
fastapi
|
||||
uvicorn
|
||||
whisper_ctranslate2
|
||||
opencc
|
||||
39
requirements_version.txt
Normal file
39
requirements_version.txt
Normal file
@@ -0,0 +1,39 @@
|
||||
annotated-types==0.6.0
|
||||
anyio==3.7.1
|
||||
av==10.0.0
|
||||
certifi==2023.7.22
|
||||
cffi==1.16.0
|
||||
charset-normalizer==3.3.0
|
||||
click==8.1.7
|
||||
coloredlogs==15.0.1
|
||||
ctranslate2==3.20.0
|
||||
fastapi==0.103.2
|
||||
faster-whisper==0.9.0
|
||||
filelock==3.12.4
|
||||
flatbuffers==23.5.26
|
||||
fsspec==2023.9.2
|
||||
h11==0.14.0
|
||||
huggingface-hub==0.17.3
|
||||
humanfriendly==10.0
|
||||
idna==3.4
|
||||
mpmath==1.3.0
|
||||
numpy==1.26.1
|
||||
onnxruntime==1.16.1
|
||||
OpenCC==1.1.7
|
||||
packaging==23.2
|
||||
protobuf==4.24.4
|
||||
pycparser==2.21
|
||||
pydantic==2.4.2
|
||||
pydantic_core==2.10.1
|
||||
PyYAML==6.0.1
|
||||
requests==2.31.0
|
||||
sniffio==1.3.0
|
||||
sounddevice==0.4.6
|
||||
starlette==0.27.0
|
||||
sympy==1.12
|
||||
tokenizers==0.14.1
|
||||
tqdm==4.66.1
|
||||
typing_extensions==4.8.0
|
||||
urllib3==2.0.6
|
||||
uvicorn==0.23.2
|
||||
whisper-ctranslate2==0.3.2
|
||||
247
whisper_fastapi.py
Normal file
247
whisper_fastapi.py
Normal file
@@ -0,0 +1,247 @@
|
||||
import wave
|
||||
import io
|
||||
import hashlib
|
||||
import argparse
|
||||
import uvicorn
|
||||
from typing import Any
|
||||
from fastapi import File, UploadFile, Form, FastAPI, Request, WebSocket
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from src.whisper_ctranslate2.whisper_ctranslate2 import Transcribe, TranscriptionOptions
|
||||
from src.whisper_ctranslate2.writers import format_timestamp
|
||||
import opencc
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--host", default="0.0.0.0", type=str)
|
||||
parser.add_argument("--port", default=5000, type=int)
|
||||
parser.add_argument("--model", default="large-v2", type=str)
|
||||
parser.add_argument("--cache_dir", default=None, type=str)
|
||||
args = parser.parse_args()
|
||||
app = FastAPI()
|
||||
ccc = opencc.OpenCC("t2s.json")
|
||||
|
||||
print("Loading model...")
|
||||
transcriber = Transcribe(
|
||||
model_path=args.model,
|
||||
device="auto",
|
||||
device_index=0,
|
||||
compute_type="default",
|
||||
threads=1,
|
||||
cache_directory=args.cache_dir,
|
||||
local_files_only=False,
|
||||
)
|
||||
print("Model loaded!")
|
||||
|
||||
|
||||
# allow all cors
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
def generate_tsv(result: dict[str, list[Any]]):
|
||||
tsv = "start\tend\ttext\n"
|
||||
for i, segment in enumerate(result["segments"]):
|
||||
start_time = str(round(1000 * segment["start"]))
|
||||
end_time = str(round(1000 * segment["end"]))
|
||||
text = segment["text"]
|
||||
tsv += f"{start_time}\t{end_time}\t{text}\n"
|
||||
return tsv
|
||||
|
||||
|
||||
def generate_srt(result: dict[str, list[Any]]):
|
||||
srt = ""
|
||||
for i, segment in enumerate(result["segments"], start=1):
|
||||
start_time = format_timestamp(segment["start"])
|
||||
end_time = format_timestamp(segment["end"])
|
||||
text = segment["text"]
|
||||
srt += f"{i}\n{start_time} --> {end_time}\n{text}\n\n"
|
||||
return srt
|
||||
|
||||
|
||||
def generate_vtt(result: dict[str, list[Any]]):
|
||||
vtt = "WEBVTT\n\n"
|
||||
for segment in result["segments"]:
|
||||
start_time = format_timestamp(segment["start"])
|
||||
end_time = format_timestamp(segment["end"])
|
||||
text = segment["text"]
|
||||
vtt += f"{start_time} --> {end_time}\n{text}\n\n"
|
||||
return vtt
|
||||
|
||||
|
||||
def get_options(*, initial_prompt=""):
|
||||
options = TranscriptionOptions(
|
||||
beam_size=5,
|
||||
best_of=5,
|
||||
patience=1.0,
|
||||
length_penalty=1.0,
|
||||
log_prob_threshold=-1.0,
|
||||
no_speech_threshold=0.6,
|
||||
compression_ratio_threshold=2.4,
|
||||
condition_on_previous_text=True,
|
||||
temperature=[0.0, 1.0 + 1e-6, 0.2],
|
||||
suppress_tokens=[-1],
|
||||
word_timestamps=True,
|
||||
print_colors=False,
|
||||
prepend_punctuations="\"'“¿([{-",
|
||||
append_punctuations="\"'.。,,!!??::”)]}、",
|
||||
vad_filter=False,
|
||||
vad_threshold=None,
|
||||
vad_min_speech_duration_ms=None,
|
||||
vad_max_speech_duration_s=None,
|
||||
vad_min_silence_duration_ms=None,
|
||||
initial_prompt=initial_prompt,
|
||||
repetition_penalty=1.0,
|
||||
no_repeat_ngram_size=0,
|
||||
prompt_reset_on_temperature=False,
|
||||
suppress_blank=False,
|
||||
)
|
||||
return options
|
||||
|
||||
|
||||
@app.websocket("/konele/ws")
|
||||
async def konele_ws(
|
||||
websocket: WebSocket,
|
||||
lang: str = "und",
|
||||
):
|
||||
await websocket.accept()
|
||||
print("WebSocket client connected, lang is", lang)
|
||||
data = b""
|
||||
while True:
|
||||
try:
|
||||
data += await websocket.receive_bytes()
|
||||
print("Received data:", len(data), data[-10:])
|
||||
if data[-3:] == b"EOS":
|
||||
print("End of speech")
|
||||
break
|
||||
except:
|
||||
break
|
||||
|
||||
md5 = hashlib.md5(data).hexdigest()
|
||||
|
||||
# create fake file for wave.open
|
||||
file_obj = io.BytesIO()
|
||||
|
||||
buffer = wave.open(file_obj, "wb")
|
||||
buffer.setnchannels(1)
|
||||
buffer.setsampwidth(2)
|
||||
buffer.setframerate(16000)
|
||||
buffer.writeframes(data)
|
||||
file_obj.seek(0)
|
||||
|
||||
options = get_options()
|
||||
|
||||
result = transcriber.inference(
|
||||
audio=file_obj,
|
||||
# Enter translate mode if target language is English
|
||||
task="translate" if lang == "en-US" else "transcribe",
|
||||
language=None, # type: ignore
|
||||
verbose=False,
|
||||
live=False,
|
||||
options=options,
|
||||
)
|
||||
text = result.get("text", "")
|
||||
text = ccc.convert(text)
|
||||
print("result", text)
|
||||
|
||||
await websocket.send_json(
|
||||
{
|
||||
"status": 0,
|
||||
"segment": 0,
|
||||
"result": {"hypotheses": [{"transcript": text}], "final": True},
|
||||
"id": md5,
|
||||
}
|
||||
)
|
||||
await websocket.close()
|
||||
|
||||
|
||||
@app.post("/konele/post")
|
||||
async def translateapi(
|
||||
request: Request,
|
||||
lang: str = "und",
|
||||
):
|
||||
content_type = request.headers.get("Content-Type", "")
|
||||
print("downloading request file", content_type)
|
||||
splited = [i.strip() for i in content_type.split(",") if "=" in i]
|
||||
info = {k: v for k, v in (i.split("=") for i in splited)}
|
||||
print(info)
|
||||
|
||||
channels = int(info.get("channels", "1"))
|
||||
rate = int(info.get("rate", "16000"))
|
||||
|
||||
body = await request.body()
|
||||
md5 = hashlib.md5(body).hexdigest()
|
||||
|
||||
# create fake file for wave.open
|
||||
file_obj = io.BytesIO()
|
||||
|
||||
buffer = wave.open(file_obj, "wb")
|
||||
buffer.setnchannels(channels)
|
||||
buffer.setsampwidth(2)
|
||||
buffer.setframerate(rate)
|
||||
buffer.writeframes(body)
|
||||
file_obj.seek(0)
|
||||
|
||||
options = get_options()
|
||||
|
||||
result = transcriber.inference(
|
||||
audio=file_obj,
|
||||
# Enter translate mode if target language is English
|
||||
task="translate" if lang == "en-US" else "transcribe",
|
||||
language=None, # type: ignore
|
||||
verbose=False,
|
||||
live=False,
|
||||
options=options,
|
||||
)
|
||||
text = result.get("text", "")
|
||||
text = ccc.convert(text)
|
||||
print("result", text)
|
||||
|
||||
return {
|
||||
"status": 0,
|
||||
"hypotheses": [{"utterance": text}],
|
||||
"id": md5,
|
||||
}
|
||||
|
||||
|
||||
@app.post("/v1/audio/transcriptions")
|
||||
async def transcription(
|
||||
file: UploadFile = File(...),
|
||||
prompt: str = Form(""),
|
||||
response_type: str = Form("json"),
|
||||
):
|
||||
"""Transcription endpoint
|
||||
|
||||
User upload audio file in multipart/form-data format and receive transcription in response
|
||||
"""
|
||||
|
||||
# timestamp as filename, keep original extension
|
||||
options = get_options(initial_prompt=prompt)
|
||||
|
||||
result: Any = transcriber.inference(
|
||||
audio=io.BytesIO(file.file.read()),
|
||||
task="transcribe",
|
||||
language=None, # type: ignore
|
||||
verbose=False,
|
||||
live=False,
|
||||
options=options,
|
||||
)
|
||||
|
||||
if response_type == "json":
|
||||
return result
|
||||
elif response_type == "text":
|
||||
return result["text"].strip()
|
||||
elif response_type == "tsv":
|
||||
return generate_tsv(result)
|
||||
elif response_type == "srt":
|
||||
return generate_srt(result)
|
||||
elif response_type == "vtt":
|
||||
return generate_vtt(result)
|
||||
|
||||
return {"error": "Invalid response_type"}
|
||||
|
||||
|
||||
uvicorn.run(app, host=args.host, port=args.port)
|
||||
Reference in New Issue
Block a user