Compare commits

...

54 Commits

Author SHA1 Message Date
28a4d11a73 Revert "Merge remote-tracking branch 'upstream/master' into prompt"
This reverts commit 6e42088656, reversing
changes made to 4a59bb011d.
2024-09-12 00:49:31 +08:00
6e42088656 Merge remote-tracking branch 'upstream/master' into prompt 2024-09-04 17:48:06 +08:00
Mahmoud Ashraf
d57c5b40b0 Remove the usage of transformers.pipeline from BatchedInferencePipeline and fix word timestamps for batched inference (#921)
* fix word timestamps for batched inference

* remove hf pipeline
2024-07-27 09:02:58 +07:00
zh-plus
83a368e98a Make vad-related parameters configurable for batched inference. (#923) 2024-07-24 09:00:32 +07:00
Jilt Sebastian
eb8390233c New PR for Faster Whisper: Batching Support, Speed Boosts, and Quality Enhancements (#856)
Batching Support, Speed Boosts, and Quality Enhancements

---------

Co-authored-by: Hargun Mujral <83234565+hargunmujral@users.noreply.github.com>
Co-authored-by: MahmoudAshraf97 <hassouna97.ma@gmail.com>
2024-07-18 16:48:52 +07:00
4a59bb011d Merge remote-tracking branch 'upstream/master' into prompt 2024-07-10 10:16:35 +08:00
trungkienbkhn
fbcf58bf98 Fix language detection with non-speech audio (#895) 2024-07-05 14:43:45 +07:00
Jordi Mas
1195359984 Filter out non_speech_tokens in suppressed tokens (#898)
* Filter out non_speech_tokens in suppressed tokens
2024-07-05 14:43:11 +07:00
trungkienbkhn
c22db5125d Bump version to 1.0.3 (#887) 2024-07-01 16:36:12 +07:00
ABen
8862bee1f8 Improve language detection when using clip_timestamps (#867) 2024-07-01 16:12:45 +07:00
Ki Hoon Kim
8d400e9870 Upgrade to Silero-Vad V5 (#884)
* Fix window_size_samples to 512

* Update SileroVADModel

* Replace ONNX file with V5 version
2024-07-01 15:40:37 +07:00
Fedir Zadniprovskyi
bced5f04c0 docs: add 'faster-whisper-server' community integration (#861)
Co-authored-by: Fedir Zadniprovskyi <github.g1k56@simplelogin.com>
2024-06-05 22:27:41 +07:00
Fedir Zadniprovskyi
65551c081f Docker file improvements (#848)
Docker file improvements

Co-authored-by: Fedir Zadniprovskyi <github.g1k56@simplelogin.com>
2024-05-20 09:13:19 +07:00
Napuh
f53be1e811 Add distil models to WhisperModel init and download_model docstrings (#847)
* chore: add distil models to WhisperModel init docstring and download_model docstring
2024-05-20 08:51:22 +07:00
Natanael Tan
4acdb5c619 Fix #839 incorrect clip_timestamps being used in model (#842)
* Fix #839

Changed the code from updating the TranscriptionOptions class instead of the options object which likely was the cause of unexpected behaviour
2024-05-17 16:35:07 +07:00
Peter Krantz
a1c3583c96 Update README.md (#841)
Spelling correction for copy/pasters
2024-05-17 15:24:47 +07:00
trungkienbkhn
2036d12634 Add Dockerfile example (#828) 2024-05-13 16:33:09 +07:00
trungkienbkhn
2f6913efc8 Bump version to 1.0.2 (#816) 2024-05-06 09:02:54 +07:00
ddorian
e11d58599d Allow av to include version 12. (#819) 2024-05-06 08:57:35 +07:00
Keating Reid
49a80eb8a8 Clarify documentation for hotwords (#817)
* Clarify documentation for hotwords

* Remove redundant type specifications
2024-05-06 08:52:59 +07:00
trungkienbkhn
8d5e6d56d9 Support initializing more whisper model args (#807) 2024-05-04 15:12:59 +07:00
trungkienbkhn
6eec07739e Add benchmarking logic for memory, wer and speed (#773) 2024-05-04 15:12:43 +07:00
jax
847fec4492 Feature/add hotwords (#731)
* add hotword params

---------

Co-authored-by: jax <jax_builder@gamil.com>
2024-05-04 15:11:52 +07:00
Keating Reid
46080e584e Loosening tokenizers version constraint (#804) 2024-05-04 15:10:24 +07:00
Sidharth Rajaram
3d1de60ef3 CUDA version and updated installation instructions (#785)
* CUDA version note and updated instructions in README

* ctranslate2 downgrade note, cuDNN v9 consideration

* clearer note on cuDNN v9 package
2024-05-04 15:09:59 +07:00
4ee1d54c14 Merge branch 'master' into prompt 2024-04-08 20:56:49 +08:00
otakutyrant
91c8307aa6 make faster_whisper.assets as a valid python package to distribute (#772) (#774) 2024-04-02 18:22:22 +02:00
Purfview
b024972a56 Foolproof: Disable VAD if clip_timestamps is in use (#769)
* Foolproof: Disable VAD if clip_timestamps is in use

Prevent silly things to happen.
2024-04-02 18:20:34 +02:00
Purfview
8ae82c8372 Bugfix: code breaks if audio is empty (#768)
* Bugfix: code breaks if audio is empty

Regression since https://github.com/SYSTRAN/faster-whisper/pull/732 PR
2024-04-02 18:18:12 +02:00
trungkienbkhn
e0c3a9ed34 Update project github link to SYSTRAN (#746) 2024-03-27 08:31:17 +01:00
Sanchit Gandhi
a67e0e47ae Add support for distil-large-v3 (#755)
* add distil-large-v3

* Update README.md

* use fp16 weights from Systran
2024-03-26 14:58:39 +01:00
trungkienbkhn
1eb9a8004c Improve language detection (#732) 2024-03-12 15:44:49 +01:00
e50d82c18c Merge remote-tracking branch 'upstream/master' into prompt 2024-03-10 11:53:58 +08:00
trungkienbkhn
a342b028b7 Bump version to 1.0.1 (#725) 2024-03-01 11:32:12 +01:00
Purfview
5090cc9d0d Fix window end heuristic for hallucination_silence_threshold (#706)
Removes the wishful heuristic causing more issues than it's fixing.

Same as https://github.com/openai/whisper/pull/2043

Example of the issue: https://github.com/openai/whisper/pull/1838#issuecomment-1960041500
2024-02-29 17:59:32 +01:00
Gabriel F
09cd57e7f3 Fix typo 'ditil' (#721) 2024-02-29 17:08:58 +01:00
trungkienbkhn
16141e65d9 Add pad_or_trim function to handle segment before encoding (#705) 2024-02-29 17:08:28 +01:00
4b64ef1f70 Merge branch 'master' into prompt 2024-02-23 10:52:53 +08:00
trungkienbkhn
06d32bf0c1 Bump version to 1.0.0 (#696) 2024-02-22 09:49:01 +01:00
Purfview
30d6043e90 Prevent infinite loop for out-of-bound timestamps in clip_timestamps (#697)
Same as https://github.com/openai/whisper/pull/2005
2024-02-22 09:48:35 +01:00
BBC-Esq
22c75d0cc3 Update README.md (#672)
Add Faster-Whisper-Transcriber to community integrations.
2024-02-21 10:18:11 +01:00
trungkienbkhn
092067208b Add clip_timestamps and hallucination_silence_threshold options (#646) 2024-02-20 17:34:54 +01:00
Jordi Mas
6ffcbdfbc2 Fix typos in README.md (#668) 2024-02-20 17:33:17 +01:00
Purfview
52695567c9 Bumps up PyAV version to support Python 3.12.x (#679) 2024-02-20 17:31:07 +01:00
IlianP
c6b28ed3a0 Update README.md (#685)
I'm surprised that WhisperX hasn't made it into this list yet, as it has more stars than faster-whisper itself 🚀
2024-02-20 17:28:00 +01:00
trungkienbkhn
4ab646035f Upgrade ctranslate2 version to support CUDA 12 (#694) 2024-02-20 17:26:55 +01:00
d04e685ca2 Merge branch 'master' into prompt 2024-02-19 17:31:58 +08:00
Purfview
f144e4c83d Expands the note for distil-whisper (#659) 2024-01-28 21:48:40 +01:00
Purfview
3aec421849 Add: More clarity of what "max_new_tokens" does (#658)
* Add: More clarity of what "max_new_tokens" does
2024-01-28 21:40:33 +01:00
Dominik Macháček
64b9f244bd Whisper-Streaming mention (#656)
under community integrations
2024-01-25 18:27:27 +01:00
Purfview
00efce1696 Bugfix: Illogical "Avoid computing higher temperatures on no_speech" (#652) 2024-01-24 11:54:43 +01:00
metame
ad3c83045b support distil-whisper (#557) 2024-01-24 10:17:12 +01:00
Jürgen Fleiß
72ff979a2e Add GUI faster-whisper project README.md (#554)
Added aTrain GUI faster-whisper transcription and diarization tool as community project.

Co-authored-by: JuergenFleiss <118339672+Juergen-J-F@users.noreply.github.com>
2024-01-18 13:01:02 +01:00
makaveli
615de0d2d9 add WhisperLive to community integration (#647) 2024-01-18 12:54:14 +01:00
25 changed files with 2562 additions and 112 deletions

View File

@@ -7,7 +7,7 @@ Contributions are welcome! Here are some pointers to help you install the librar
We recommend installing the module in editable mode with the `dev` extra requirements:
```bash
git clone https://github.com/guillaumekln/faster-whisper.git
git clone https://github.com/SYSTRAN/faster-whisper.git
cd faster-whisper/
pip install -e .[dev]
```

View File

@@ -1,6 +1,6 @@
MIT License
Copyright (c) 2023 Guillaume Klein
Copyright (c) 2023 SYSTRAN
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal

View File

@@ -1,4 +1,4 @@
[![CI](https://github.com/guillaumekln/faster-whisper/workflows/CI/badge.svg)](https://github.com/guillaumekln/faster-whisper/actions?query=workflow%3ACI) [![PyPI version](https://badge.fury.io/py/faster-whisper.svg)](https://badge.fury.io/py/faster-whisper)
[![CI](https://github.com/SYSTRAN/faster-whisper/workflows/CI/badge.svg)](https://github.com/SYSTRAN/faster-whisper/actions?query=workflow%3ACI) [![PyPI version](https://badge.fury.io/py/faster-whisper.svg)](https://badge.fury.io/py/faster-whisper)
# Faster Whisper transcription with CTranslate2
@@ -8,11 +8,13 @@ This implementation is up to 4 times faster than [openai/whisper](https://github
## Benchmark
### Whisper
For reference, here's the time and memory usage that are required to transcribe [**13 minutes**](https://www.youtube.com/watch?v=0u7tTptBo9I) of audio using different implementations:
* [openai/whisper](https://github.com/openai/whisper)@[6dea21fd](https://github.com/openai/whisper/commit/6dea21fd7f7253bfe450f1e2512a0fe47ee2d258)
* [whisper.cpp](https://github.com/ggerganov/whisper.cpp)@[3b010f9](https://github.com/ggerganov/whisper.cpp/commit/3b010f9bed9a6068609e9faf52383aea792b0362)
* [faster-whisper](https://github.com/guillaumekln/faster-whisper)@[cce6b53e](https://github.com/guillaumekln/faster-whisper/commit/cce6b53e4554f71172dad188c45f10fb100f6e3e)
* [faster-whisper](https://github.com/SYSTRAN/faster-whisper)@[cce6b53e](https://github.com/SYSTRAN/faster-whisper/commit/cce6b53e4554f71172dad188c45f10fb100f6e3e)
### Large-v2 model on GPU
@@ -36,6 +38,33 @@ For reference, here's the time and memory usage that are required to transcribe
*Executed with 8 threads on a Intel(R) Xeon(R) Gold 6226R.*
### Distil-whisper
| Implementation | Precision | Beam size | Time | Gigaspeech WER |
| --- | --- | --- | --- | --- |
| distil-whisper/distil-large-v2 | fp16 | 4 |- | 10.36 |
| [faster-distil-large-v2](https://huggingface.co/Systran/faster-distil-whisper-large-v2) | fp16 | 5 | - | 10.28 |
| distil-whisper/distil-medium.en | fp16 | 4 | - | 11.21 |
| [faster-distil-medium.en](https://huggingface.co/Systran/faster-distil-whisper-medium.en) | fp16 | 5 | - | 11.21 |
*Executed with CUDA 11.4 on a NVIDIA 3090.*
<details>
<summary>testing details (click to expand)</summary>
For `distil-whisper/distil-large-v2`, the WER is tested with code sample from [link](https://huggingface.co/distil-whisper/distil-large-v2#evaluation). for `faster-distil-whisper`, the WER is tested with setting:
```python
from faster_whisper import WhisperModel
model_size = "distil-large-v2"
# model_size = "distil-medium.en"
# Run on GPU with FP16
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en")
```
</details>
## Requirements
* Python 3.8 or greater
@@ -46,28 +75,35 @@ Unlike openai-whisper, FFmpeg does **not** need to be installed on the system. T
GPU execution requires the following NVIDIA libraries to be installed:
* [cuBLAS for CUDA 11](https://developer.nvidia.com/cublas)
* [cuDNN 8 for CUDA 11](https://developer.nvidia.com/cudnn)
* [cuBLAS for CUDA 12](https://developer.nvidia.com/cublas)
* [cuDNN 8 for CUDA 12](https://developer.nvidia.com/cudnn)
There are multiple ways to install these libraries. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.
**Note**: Latest versions of `ctranslate2` support CUDA 12 only. For CUDA 11, the current workaround is downgrading to the `3.24.0` version of `ctranslate2` (This can be done with `pip install --force-reinstall ctranslate2==3.24.0` or specifying the version in a `requirements.txt`).
There are multiple ways to install the NVIDIA libraries mentioned above. The recommended way is described in the official NVIDIA documentation, but we also suggest other installation methods below.
<details>
<summary>Other installation methods (click to expand)</summary>
**Note:** For all these methods below, keep in mind the above note regarding CUDA versions. Depending on your setup, you may need to install the _CUDA 11_ versions of libraries that correspond to the CUDA 12 libraries listed in the instructions below.
#### Use Docker
The libraries are installed in this official NVIDIA Docker image: `nvidia/cuda:11.8.0-cudnn8-runtime-ubuntu22.04`.
The libraries (cuBLAS, cuDNN) are installed in these official NVIDIA CUDA Docker images: `nvidia/cuda:12.0.0-runtime-ubuntu20.04` or `nvidia/cuda:12.0.0-runtime-ubuntu22.04`.
#### Install with `pip` (Linux only)
On Linux these libraries can be installed with `pip`. Note that `LD_LIBRARY_PATH` must be set before launching Python.
```bash
pip install nvidia-cublas-cu11 nvidia-cudnn-cu11
pip install nvidia-cublas-cu12 nvidia-cudnn-cu12
export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
```
**Note**: Version 9+ of `nvidia-cudnn-cu12` appears to cause issues due its reliance on cuDNN 9 (Faster-Whisper does not currently support cuDNN 9). Ensure your version of the Python package is for cuDNN 8.
#### Download the libraries from Purfview's repository (Windows & Linux)
Purfview's [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) provides the required NVIDIA libraries for Windows & Linux in a [single archive](https://github.com/Purfview/whisper-standalone-win/releases/tag/libs). Decompress the archive and place the libraries in a directory included in the `PATH`.
@@ -88,19 +124,21 @@ pip install faster-whisper
### Install the master branch
```bash
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/refs/heads/master.tar.gz"
pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/refs/heads/master.tar.gz"
```
### Install a specific commit
```bash
pip install --force-reinstall "faster-whisper @ https://github.com/guillaumekln/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
pip install --force-reinstall "faster-whisper @ https://github.com/SYSTRAN/faster-whisper/archive/a4f1cc8f11433e454c3934442b5e1a4ed5e865c3.tar.gz"
```
</details>
## Usage
### Faster-whisper
```python
from faster_whisper import WhisperModel
@@ -128,6 +166,25 @@ for segment in segments:
segments, _ = model.transcribe("audio.mp3")
segments = list(segments) # The transcription will actually run here.
```
### Faster Distil-Whisper
The Distil-Whisper checkpoints are compatible with the Faster-Whisper package. In particular, the latest [distil-large-v3](https://huggingface.co/distil-whisper/distil-large-v3)
checkpoint is intrinsically designed to work with the Faster-Whisper transcription algorithm. The following code snippet
demonstrates how to run inference with distil-large-v3 on a specified audio file:
```python
from faster_whisper import WhisperModel
model_size = "distil-large-v3"
model = WhisperModel(model_size, device="cuda", compute_type="float16")
segments, info = model.transcribe("audio.mp3", beam_size=5, language="en", condition_on_previous_text=False)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
```
For more information about the distil-large-v3 model, refer to the original [model card](https://huggingface.co/distil-whisper/distil-large-v3).
### Word-level timestamps
@@ -147,7 +204,7 @@ The library integrates the [Silero VAD](https://github.com/snakers4/silero-vad)
segments, _ = model.transcribe("audio.mp3", vad_filter=True)
```
The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the [source code](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:
The default behavior is conservative and only removes silence longer than 2 seconds. See the available VAD parameters and default values in the [source code](https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/vad.py). They can be customized with the dictionary argument `vad_parameters`:
```python
segments, _ = model.transcribe(
@@ -170,22 +227,29 @@ logging.getLogger("faster_whisper").setLevel(logging.DEBUG)
### Going further
See more model and transcription options in the [`WhisperModel`](https://github.com/guillaumekln/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.
See more model and transcription options in the [`WhisperModel`](https://github.com/SYSTRAN/faster-whisper/blob/master/faster_whisper/transcribe.py) class implementation.
## Community integrations
Here is a non exhaustive list of open-source projects using faster-whisper. Feel free to add your project to the list!
* [faster-whisper-server](https://github.com/fedirz/faster-whisper-server) is an OpenAI compatible server using `faster-whisper`. It's easily deployable with Docker, works with OpenAI SDKs/CLI, supports streaming, and live transcription.
* [WhisperX](https://github.com/m-bain/whisperX) is an award-winning Python library that offers speaker diarization and accurate word-level timestamps using wav2vec2 alignment
* [whisper-ctranslate2](https://github.com/Softcatala/whisper-ctranslate2) is a command line client based on faster-whisper and compatible with the original client from openai/whisper.
* [whisper-diarize](https://github.com/MahmoudAshraf97/whisper-diarization) is a speaker diarization tool that is based on faster-whisper and NVIDIA NeMo.
* [whisper-standalone-win](https://github.com/Purfview/whisper-standalone-win) Standalone CLI executables of faster-whisper for Windows, Linux & macOS.
* [asr-sd-pipeline](https://github.com/hedrergudene/asr-sd-pipeline) provides a scalable, modular, end to end multi-speaker speech to text solution implemented using AzureML pipelines.
* [Open-Lyrics](https://github.com/zh-plus/Open-Lyrics) is a Python library that transcribes voice files using faster-whisper, and translates/polishes the resulting text into `.lrc` files in the desired language using OpenAI-GPT.
* [wscribe](https://github.com/geekodour/wscribe) is a flexible transcript generation tool supporting faster-whisper, it can export word level transcript and the exported transcript then can be edited with [wscribe-editor](https://github.com/geekodour/wscribe-editor)
* [aTrain](https://github.com/BANDAS-Center/aTrain) is a graphical user interface implementation of faster-whisper developed at the BANDAS-Center at the University of Graz for transcription and diarization in Windows ([Windows Store App](https://apps.microsoft.com/detail/atrain/9N15Q44SZNS2)) and Linux.
* [Whisper-Streaming](https://github.com/ufal/whisper_streaming) implements real-time mode for offline Whisper-like speech-to-text models with faster-whisper as the most recommended back-end. It implements a streaming policy with self-adaptive latency based on the actual source complexity, and demonstrates the state of the art.
* [WhisperLive](https://github.com/collabora/WhisperLive) is a nearly-live implementation of OpenAI's Whisper which uses faster-whisper as the backend to transcribe audio in real-time.
* [Faster-Whisper-Transcriber](https://github.com/BBC-Esq/ctranslate2-faster-whisper-transcriber) is a simple but reliable voice transcriber that provides a user-friendly interface.
## Model conversion
When loading a model from its size such as `WhisperModel("large-v3")`, the correspondig CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/Systran).
When loading a model from its size such as `WhisperModel("large-v3")`, the corresponding CTranslate2 model is automatically downloaded from the [Hugging Face Hub](https://huggingface.co/Systran).
We also provide a script to convert any Whisper models compatible with the Transformers library. They could be the original OpenAI models or user fine-tuned models.

BIN
benchmark/benchmark.m4a Normal file

Binary file not shown.

View File

@@ -0,0 +1,94 @@
import argparse
import time
from typing import Callable
import py3nvml.py3nvml as nvml
from memory_profiler import memory_usage
from utils import MyThread, get_logger, inference
logger = get_logger("faster-whisper")
parser = argparse.ArgumentParser(description="Memory benchmark")
parser.add_argument(
"--gpu_memory", action="store_true", help="Measure GPU memory usage"
)
parser.add_argument("--device-index", type=int, default=0, help="GPU device index")
parser.add_argument(
"--interval",
type=float,
default=0.5,
help="Interval at which measurements are collected",
)
args = parser.parse_args()
device_idx = args.device_index
interval = args.interval
def measure_memory(func: Callable[[], None]):
if args.gpu_memory:
logger.info(
"Measuring maximum GPU memory usage on GPU device."
" Make sure to not have additional processes running on the same GPU."
)
# init nvml
nvml.nvmlInit()
handle = nvml.nvmlDeviceGetHandleByIndex(device_idx)
gpu_name = nvml.nvmlDeviceGetName(handle)
gpu_memory_limit = nvml.nvmlDeviceGetMemoryInfo(handle).total >> 20
gpu_power_limit = nvml.nvmlDeviceGetPowerManagementLimit(handle) / 1000.0
info = {"gpu_memory_usage": [], "gpu_power_usage": []}
def _get_gpu_info():
while True:
info["gpu_memory_usage"].append(
nvml.nvmlDeviceGetMemoryInfo(handle).used >> 20
)
info["gpu_power_usage"].append(
nvml.nvmlDeviceGetPowerUsage(handle) / 1000
)
time.sleep(interval)
if stop:
break
return info
stop = False
thread = MyThread(_get_gpu_info, params=())
thread.start()
func()
stop = True
thread.join()
result = thread.get_result()
# shutdown nvml
nvml.nvmlShutdown()
max_memory_usage = max(result["gpu_memory_usage"])
max_power_usage = max(result["gpu_power_usage"])
print("GPU name: %s" % gpu_name)
print("GPU device index: %s" % device_idx)
print(
"Maximum GPU memory usage: %dMiB / %dMiB (%.2f%%)"
% (
max_memory_usage,
gpu_memory_limit,
(max_memory_usage / gpu_memory_limit) * 100,
)
)
print(
"Maximum GPU power usage: %dW / %dW (%.2f%%)"
% (
max_power_usage,
gpu_power_limit,
(max_power_usage / gpu_power_limit) * 100,
)
)
else:
logger.info("Measuring maximum increase of memory usage.")
max_usage = memory_usage(func, max_usage=True, interval=interval)
print("Maximum increase of RAM memory usage: %d MiB" % max_usage)
if __name__ == "__main__":
measure_memory(inference)

1742
benchmark/normalizer.json Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,6 @@
transformers
jiwer
evaluate
datasets
memory_profiler
py3nvml

View File

@@ -0,0 +1,31 @@
import argparse
import timeit
from typing import Callable
from utils import inference
parser = argparse.ArgumentParser(description="Speed benchmark")
parser.add_argument(
"--repeat",
type=int,
default=3,
help="Times an experiment will be run.",
)
args = parser.parse_args()
def measure_speed(func: Callable[[], None]):
# as written in https://docs.python.org/3/library/timeit.html#timeit.Timer.repeat,
# min should be taken rather than the average
runtimes = timeit.repeat(
func,
repeat=args.repeat,
number=10,
)
print(runtimes)
print("Min execution time: %.3fs" % (min(runtimes) / 10.0))
if __name__ == "__main__":
measure_speed(inference)

39
benchmark/utils.py Normal file
View File

@@ -0,0 +1,39 @@
import logging
from threading import Thread
from typing import Optional
from faster_whisper import WhisperModel
model_path = "large-v3"
model = WhisperModel(model_path, device="cuda")
def inference():
segments, info = model.transcribe("benchmark.m4a", language="fr")
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
def get_logger(name: Optional[str] = None) -> logging.Logger:
formatter = logging.Formatter("%(levelname)s: %(message)s")
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
handler = logging.StreamHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
return logger
class MyThread(Thread):
def __init__(self, func, params):
super(MyThread, self).__init__()
self.func = func
self.params = params
self.result = None
def run(self):
self.result = self.func(*self.params)
def get_result(self):
return self.result

View File

@@ -0,0 +1,61 @@
import argparse
import json
from datasets import load_dataset
from evaluate import load
from tqdm import tqdm
from transformers.models.whisper.english_normalizer import EnglishTextNormalizer
from faster_whisper import WhisperModel
parser = argparse.ArgumentParser(description="WER benchmark")
parser.add_argument(
"--audio_numb",
type=int,
default=None,
help="Specify the number of validation audio files in the dataset."
" Set to None to retrieve all audio files.",
)
args = parser.parse_args()
model_path = "large-v3"
model = WhisperModel(model_path, device="cuda")
# load the dataset with streaming mode
dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True)
# define the evaluation metric
wer_metric = load("wer")
normalizer = EnglishTextNormalizer(json.load(open("normalizer.json")))
def inference(batch):
batch["transcription"] = []
for sample in batch["audio"]:
segments, info = model.transcribe(sample["array"], language="en")
batch["transcription"].append("".join([segment.text for segment in segments]))
batch["reference"] = batch["text"]
return batch
dataset = dataset.map(function=inference, batched=True, batch_size=16)
all_transcriptions = []
all_references = []
# iterate over the dataset and run inference
for i, result in tqdm(enumerate(dataset), desc="Evaluating..."):
all_transcriptions.append(result["transcription"])
all_references.append(result["reference"])
if args.audio_numb and i == (args.audio_numb - 1):
break
# normalize predictions and references
all_transcriptions = [normalizer(transcription) for transcription in all_transcriptions]
all_references = [normalizer(reference) for reference in all_references]
# compute the WER metric
wer = 100 * wer_metric.compute(
predictions=all_transcriptions, references=all_references
)
print("WER: %.3f" % wer)

6
docker/Dockerfile Normal file
View File

@@ -0,0 +1,6 @@
FROM nvidia/cuda:12.2.2-cudnn8-runtime-ubuntu22.04
WORKDIR /root
RUN apt-get update -y && apt-get install -y python3-pip
COPY infer.py jfk.flac ./
RUN pip3 install faster-whisper
CMD ["python3", "infer.py"]

7
docker/infer.py Normal file
View File

@@ -0,0 +1,7 @@
from faster_whisper import WhisperModel
jfk_path = "jfk.flac"
model = WhisperModel("tiny", device="cuda")
segments, info = model.transcribe(jfk_path, word_timestamps=True)
for segment in segments:
print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))

BIN
docker/jfk.flac Normal file

Binary file not shown.

View File

View File

@@ -102,3 +102,18 @@ def _resample_frames(frames, resampler):
# Add None to flush the resampler.
for frame in itertools.chain(frames, [None]):
yield from resampler.resample(frame)
def pad_or_trim(array, length: int, *, axis: int = -1):
"""
Pad or trim the audio array to N_SAMPLES, as expected by the encoder.
"""
if array.shape[axis] > length:
array = array.take(indices=range(length), axis=axis)
if array.shape[axis] < length:
pad_widths = [(0, 0)] * array.ndim
pad_widths[axis] = (0, length - array.shape[axis])
array = np.pad(array, pad_widths)
return array

View File

@@ -142,11 +142,15 @@ class FeatureExtractor:
data[f] = np.fft.fft(fft_signal, axis=0)[:num_fft_bins]
return data.T
def __call__(self, waveform, padding=True):
def __call__(self, waveform, padding=True, chunk_length=None):
"""
Compute the log-Mel spectrogram of the provided audio, gives similar results
whisper's original torch implementation with 1e-5 tolerance.
"""
if chunk_length is not None:
self.n_samples = chunk_length * self.sampling_rate
self.nb_max_frames = self.n_samples // self.hop_length
if padding:
waveform = np.pad(waveform, [(0, self.n_samples)])

View File

@@ -105,6 +105,42 @@ class Tokenizer:
[s if isinstance(s, str) else self.tokenizer.decode(s) for s in outputs]
)
@cached_property
def non_speech_tokens(self) -> Tuple[int]:
"""
Returns the list of tokens to suppress in order to avoid any speaker tags or non-speech
annotations, to prevent sampling texts that are not actually spoken in the audio, e.g.
- ♪♪♪
- ( SPEAKING FOREIGN LANGUAGE )
- [DAVID] Hey there,
keeping basic punctuations like commas, periods, question marks, exclamation points, etc.
"""
symbols = list('"#()*+/:;<=>@[\\]^_`{|}~「」『』')
symbols += (
"<< >> <<< >>> -- --- -( -[ (' (\" (( )) ((( ))) [[ ]] {{ }} ♪♪ ♪♪♪".split()
)
# symbols that may be a single token or multiple tokens depending on the tokenizer.
# In case they're multiple tokens, suppress the first token, which is safe because:
# These are between U+2640 and U+267F miscellaneous symbols that are okay to suppress
# in generations, and in the 3-byte UTF-8 representation they share the first two bytes.
miscellaneous = set("♩♪♫♬♭♮♯")
assert all(0x2640 <= ord(c) <= 0x267F for c in miscellaneous)
# allow hyphens "-" and single quotes "'" between words, but not at the beginning of a word
result = {self.encode(" -")[0], self.encode(" '")[0]}
for symbol in symbols + list(miscellaneous):
for tokens in [
self.encode(symbol),
self.encode(" " + symbol),
]:
if len(tokens) == 1 or symbol in miscellaneous:
result.add(tokens[0])
return tuple(sorted(result))
def split_to_word_tokens(
self, tokens: List[int]
) -> Tuple[List[str], List[List[int]]]:

View File

@@ -11,10 +11,10 @@ import ctranslate2
import numpy as np
import tokenizers
from faster_whisper.audio import decode_audio
from faster_whisper.audio import decode_audio, pad_or_trim
from faster_whisper.feature_extractor import FeatureExtractor
from faster_whisper.tokenizer import _LANGUAGE_CODES, Tokenizer
from faster_whisper.utils import download_model, format_timestamp, get_logger
from faster_whisper.utils import download_model, format_timestamp, get_end, get_logger
from faster_whisper.vad import (
SpeechTimestampsMap,
VadOptions,
@@ -66,6 +66,10 @@ class TranscriptionOptions(NamedTuple):
word_timestamps: bool
prepend_punctuations: str
append_punctuations: str
max_new_tokens: Optional[int]
clip_timestamps: Union[str, List[float]]
hallucination_silence_threshold: Optional[float]
hotwords: Optional[str]
class TranscriptionInfo(NamedTuple):
@@ -89,12 +93,15 @@ class WhisperModel:
num_workers: int = 1,
download_root: Optional[str] = None,
local_files_only: bool = False,
files: dict = None,
**model_kwargs,
):
"""Initializes the Whisper model.
Args:
model_size_or_path: Size of the model to use (tiny, tiny.en, base, base.en,
small, small.en, medium, medium.en, large-v1, large-v2, large-v3, or large), a path to a
small, small.en, distil-small.en, medium, medium.en, distil-medium.en, large-v1,
large-v2, large-v3, large, distil-large-v2 or distil-large-v3), a path to a
converted model directory, or a CTranslate2-converted Whisper model ID from the HF Hub.
When a size or a model ID is configured, the converted model is downloaded
from the Hugging Face Hub.
@@ -115,10 +122,18 @@ class WhisperModel:
are saved in the standard Hugging Face cache directory.
local_files_only: If True, avoid downloading the file and return the path to the
local cached file if it exists.
files: Load model files from the memory. This argument is a dictionary mapping file names
to file contents as file-like or bytes objects. If this is set, model_path acts as an
identifier for this model.
"""
self.logger = get_logger()
if os.path.isdir(model_size_or_path):
tokenizer_bytes, preprocessor_bytes = None, None
if files:
model_path = model_size_or_path
tokenizer_bytes = files.pop("tokenizer.json", None)
preprocessor_bytes = files.pop("preprocessor_config.json", None)
elif os.path.isdir(model_size_or_path):
model_path = model_size_or_path
else:
model_path = download_model(
@@ -134,17 +149,20 @@ class WhisperModel:
compute_type=compute_type,
intra_threads=cpu_threads,
inter_threads=num_workers,
files=files,
**model_kwargs,
)
tokenizer_file = os.path.join(model_path, "tokenizer.json")
if os.path.isfile(tokenizer_file):
if tokenizer_bytes:
self.hf_tokenizer = tokenizers.Tokenizer.from_buffer(tokenizer_bytes)
elif os.path.isfile(tokenizer_file):
self.hf_tokenizer = tokenizers.Tokenizer.from_file(tokenizer_file)
else:
self.hf_tokenizer = tokenizers.Tokenizer.from_pretrained(
"openai/whisper-tiny" + ("" if self.model.is_multilingual else ".en")
)
self.feat_kwargs = self._get_feature_kwargs(model_path)
self.feat_kwargs = self._get_feature_kwargs(model_path, preprocessor_bytes)
self.feature_extractor = FeatureExtractor(**self.feat_kwargs)
self.num_samples_per_token = self.feature_extractor.hop_length * 2
self.frames_per_second = (
@@ -162,19 +180,21 @@ class WhisperModel:
"""The languages supported by the model."""
return list(_LANGUAGE_CODES) if self.model.is_multilingual else ["en"]
def _get_feature_kwargs(self, model_path) -> dict:
preprocessor_config_file = os.path.join(model_path, "preprocessor_config.json")
def _get_feature_kwargs(self, model_path, preprocessor_bytes=None) -> dict:
config = {}
if os.path.isfile(preprocessor_config_file):
try:
with open(preprocessor_config_file, "r", encoding="utf-8") as json_file:
config = json.load(json_file)
valid_keys = signature(FeatureExtractor.__init__).parameters.keys()
config = {k: v for k, v in config.items() if k in valid_keys}
except json.JSONDecodeError as e:
self.logger.warning(
"Could not load preprocessor_config.json: %s", str(e)
)
try:
config_path = os.path.join(model_path, "preprocessor_config.json")
if preprocessor_bytes:
config = json.loads(preprocessor_bytes)
elif os.path.isfile(config_path):
with open(config_path, "r", encoding="utf-8") as file:
config = json.load(file)
else:
return config
valid_keys = signature(FeatureExtractor.__init__).parameters.keys()
return {k: v for k, v in config.items() if k in valid_keys}
except json.JSONDecodeError as e:
self.logger.warning("Could not load preprocessor config: %s", e)
return config
@@ -213,6 +233,13 @@ class WhisperModel:
append_punctuations: str = "\"'.。,!?::”)]}、",
vad_filter: bool = False,
vad_parameters: Optional[Union[dict, VadOptions]] = None,
max_new_tokens: Optional[int] = None,
chunk_length: Optional[int] = None,
clip_timestamps: Union[str, List[float]] = "0",
hallucination_silence_threshold: Optional[float] = None,
hotwords: Optional[str] = None,
language_detection_threshold: Optional[float] = None,
language_detection_segments: int = 1,
) -> Tuple[Iterable[Segment], TranscriptionInfo]:
"""Transcribes an input file.
@@ -250,7 +277,7 @@ class WhisperModel:
prefix: Optional text to provide as a prefix for the first window.
suppress_blank: Suppress blank outputs at the beginning of the sampling.
suppress_tokens: List of token IDs to suppress. -1 will suppress a default set
of symbols as defined in the model config.json file.
of symbols as defined in `tokenizer.non_speech_tokens()`
without_timestamps: Only sample text tokens.
max_initial_timestamp: The initial timestamp cannot be later than this.
word_timestamps: Extract word-level timestamps using the cross-attention pattern
@@ -264,7 +291,22 @@ class WhisperModel:
https://github.com/snakers4/silero-vad.
vad_parameters: Dictionary of Silero VAD parameters or VadOptions class (see available
parameters and default values in the class `VadOptions`).
max_new_tokens: Maximum number of new tokens to generate per-chunk. If not set,
the maximum will be set by the default max_length.
chunk_length: The length of audio segments. If it is not None, it will overwrite the
default chunk_length of the FeatureExtractor.
clip_timestamps:
Comma-separated list start,end,start,end,... timestamps (in seconds) of clips to
process. The last end timestamp defaults to the end of the file.
vad_filter will be ignored if clip_timestamps is used.
hallucination_silence_threshold:
When word_timestamps is True, skip silent periods longer than this threshold
(in seconds) when a possible hallucination is detected
hotwords:
Hotwords/hint phrases to provide the model with. Has no effect if prefix is not None.
language_detection_threshold: If the maximum probability of the language tokens is higher
than this value, the language is detected.
language_detection_segments: Number of segments to consider for the language detection.
Returns:
A tuple with:
@@ -283,7 +325,7 @@ class WhisperModel:
"Processing audio with duration %s", format_timestamp(duration)
)
if vad_filter:
if vad_filter and clip_timestamps == "0":
if vad_parameters is None:
vad_parameters = VadOptions()
elif isinstance(vad_parameters, dict):
@@ -313,7 +355,7 @@ class WhisperModel:
else:
speech_chunks = None
features = self.feature_extractor(audio)
features = self.feature_extractor(audio, chunk_length=chunk_length)
encoder_output = None
all_language_probs = None
@@ -323,15 +365,62 @@ class WhisperModel:
language = "en"
language_probability = 1
else:
segment = features[:, : self.feature_extractor.nb_max_frames]
encoder_output = self.encode(segment)
# results is a list of tuple[str, float] with language names and
# probabilities.
results = self.model.detect_language(encoder_output)[0]
# Parse language names to strip out markers
all_language_probs = [(token[2:-2], prob) for (token, prob) in results]
# Get top language token and probability
language, language_probability = all_language_probs[0]
if (
language_detection_segments is None
or language_detection_segments < 1
):
language_detection_segments = 1
start_timestamp = (
float(clip_timestamps.split(",")[0])
if isinstance(clip_timestamps, str)
else clip_timestamps[0]
)
content_frames = (
features.shape[-1] - self.feature_extractor.nb_max_frames
)
seek = (
int(start_timestamp * self.frames_per_second)
if start_timestamp * self.frames_per_second < content_frames
else 0
)
end_frames = min(
seek
+ self.feature_extractor.nb_max_frames
* language_detection_segments,
content_frames,
)
detected_language_info = {}
while seek <= end_frames:
segment = features[
:, seek : seek + self.feature_extractor.nb_max_frames
]
encoder_output = self.encode(segment)
# results is a list of tuple[str, float] with language names and
# probabilities.
results = self.model.detect_language(encoder_output)[0]
# Parse language names to strip out markers
all_language_probs = [
(token[2:-2], prob) for (token, prob) in results
]
# Get top language token and probability
language, language_probability = all_language_probs[0]
if (
language_detection_threshold is None
or language_probability > language_detection_threshold
):
break
detected_language_info.setdefault(language, []).append(
language_probability
)
seek += segment.shape[-1]
else:
# If no language detected for all segments, the majority vote of the highest
# projected languages for all segments is used to determine the language.
language = max(
detected_language_info,
key=lambda lang: len(detected_language_info[lang]),
)
language_probability = max(detected_language_info[language])
self.logger.info(
"Detected language '%s' with probability %.2f",
@@ -373,12 +462,20 @@ class WhisperModel:
initial_prompt=initial_prompt,
prefix=prefix,
suppress_blank=suppress_blank,
suppress_tokens=get_suppressed_tokens(tokenizer, suppress_tokens),
suppress_tokens=(
get_suppressed_tokens(tokenizer, suppress_tokens)
if suppress_tokens
else suppress_tokens
),
without_timestamps=without_timestamps,
max_initial_timestamp=max_initial_timestamp,
word_timestamps=word_timestamps,
prepend_punctuations=prepend_punctuations,
append_punctuations=append_punctuations,
max_new_tokens=max_new_tokens,
clip_timestamps=clip_timestamps,
hallucination_silence_threshold=hallucination_silence_threshold,
hotwords=hotwords,
)
segments = self.generate_segments(features, tokenizer, options, encoder_output)
@@ -395,7 +492,6 @@ class WhisperModel:
vad_options=vad_parameters,
all_language_probs=all_language_probs,
)
return segments, info
def generate_segments(
@@ -406,8 +502,35 @@ class WhisperModel:
encoder_output: Optional[ctranslate2.StorageView] = None,
) -> Iterable[Segment]:
content_frames = features.shape[-1] - self.feature_extractor.nb_max_frames
content_duration = float(content_frames * self.feature_extractor.time_per_frame)
if isinstance(options.clip_timestamps, str):
options = options._replace(
clip_timestamps=[
float(ts)
for ts in (
options.clip_timestamps.split(",")
if options.clip_timestamps
else []
)
]
)
seek_points: List[int] = [
round(ts * self.frames_per_second) for ts in options.clip_timestamps
]
if len(seek_points) == 0:
seek_points.append(0)
if len(seek_points) % 2 == 1:
seek_points.append(content_frames)
seek_clips: List[Tuple[int, int]] = list(
zip(seek_points[::2], seek_points[1::2])
)
punctuation = "\"'“¿([{-\"'.。,!?::”)]}、"
idx = 0
seek = 0
clip_idx = 0
seek = seek_clips[clip_idx][0]
all_tokens = []
all_prompt_text = []
prompt_reset_since = 0
@@ -421,13 +544,34 @@ class WhisperModel:
all_tokens.extend(options.initial_prompt)
last_speech_timestamp = 0.0
while seek < content_frames:
# NOTE: This loop is obscurely flattened to make the diff readable.
# A later commit should turn this into a simpler nested loop.
# for seek_clip_start, seek_clip_end in seek_clips:
# while seek < seek_clip_end
while clip_idx < len(seek_clips):
seek_clip_start, seek_clip_end = seek_clips[clip_idx]
if seek_clip_end > content_frames:
seek_clip_end = content_frames
if seek < seek_clip_start:
seek = seek_clip_start
if seek >= seek_clip_end:
clip_idx += 1
if clip_idx < len(seek_clips):
seek = seek_clips[clip_idx][0]
continue
time_offset = seek * self.feature_extractor.time_per_frame
segment = features[:, seek : seek + self.feature_extractor.nb_max_frames]
segment_size = min(
self.feature_extractor.nb_max_frames, content_frames - seek
window_end_time = float(
(seek + self.feature_extractor.nb_max_frames)
* self.feature_extractor.time_per_frame
)
segment_size = min(
self.feature_extractor.nb_max_frames,
content_frames - seek,
seek_clip_end - seek,
)
segment = features[:, seek : seek + segment_size]
segment_duration = segment_size * self.feature_extractor.time_per_frame
segment = pad_or_trim(segment, self.feature_extractor.nb_max_frames)
if self.logger.isEnabledFor(logging.DEBUG):
self.logger.debug(
@@ -440,6 +584,7 @@ class WhisperModel:
previous_tokens,
without_timestamps=options.without_timestamps,
prefix=options.prefix if seek == 0 else None,
hotwords=options.hotwords,
)
if seek > 0 or encoder_output is None:
@@ -479,10 +624,33 @@ class WhisperModel:
previous_seek = seek
current_segments = []
# anomalous words are very long/short/improbable
def word_anomaly_score(word: dict) -> float:
probability = word.get("probability", 0.0)
duration = word["end"] - word["start"]
score = 0.0
if probability < 0.15:
score += 1.0
if duration < 0.133:
score += (0.133 - duration) * 15
if duration > 2.0:
score += duration - 2.0
return score
def is_segment_anomaly(segment: Optional[dict]) -> bool:
if segment is None or not segment["words"]:
return False
words = [w for w in segment["words"] if w["word"] not in punctuation]
words = words[:8]
score = sum(word_anomaly_score(w) for w in words)
return score >= 3 or score + 0.01 >= len(words)
def next_words_segment(segments: List[dict]) -> Optional[dict]:
return next((s for s in segments if s["words"]), None)
single_timestamp_ending = (
len(tokens) >= 2
and tokens[-2] < tokenizer.timestamp_begin
and tokens[-1] >= tokenizer.timestamp_begin
and tokens[-2] < tokenizer.timestamp_begin <= tokens[-1]
)
consecutive_timestamps = [
@@ -565,18 +733,62 @@ class WhisperModel:
last_speech_timestamp=last_speech_timestamp,
)
word_end_timestamps = [
w["end"] for s in current_segments for w in s["words"]
]
if len(word_end_timestamps) > 0:
last_speech_timestamp = word_end_timestamps[-1]
if not single_timestamp_ending and len(word_end_timestamps) > 0:
seek_shift = round(
(word_end_timestamps[-1] - time_offset) * self.frames_per_second
)
if not single_timestamp_ending:
last_word_end = get_end(current_segments)
if last_word_end is not None and last_word_end > time_offset:
seek = round(last_word_end * self.frames_per_second)
if seek_shift > 0:
seek = previous_seek + seek_shift
# skip silence before possible hallucinations
if options.hallucination_silence_threshold is not None:
threshold = options.hallucination_silence_threshold
# if first segment might be a hallucination, skip leading silence
first_segment = next_words_segment(current_segments)
if first_segment is not None and is_segment_anomaly(first_segment):
gap = first_segment["start"] - time_offset
if gap > threshold:
seek = previous_seek + round(gap * self.frames_per_second)
continue
# skip silence before any possible hallucination that is surrounded
# by silence or more hallucinations
hal_last_end = last_speech_timestamp
for si in range(len(current_segments)):
segment = current_segments[si]
if not segment["words"]:
continue
if is_segment_anomaly(segment):
next_segment = next_words_segment(
current_segments[si + 1 :]
)
if next_segment is not None:
hal_next_start = next_segment["words"][0]["start"]
else:
hal_next_start = time_offset + segment_duration
silence_before = (
segment["start"] - hal_last_end > threshold
or segment["start"] < threshold
or segment["start"] - time_offset < 2.0
)
silence_after = (
hal_next_start - segment["end"] > threshold
or is_segment_anomaly(next_segment)
or window_end_time - segment["end"] < 2.0
)
if silence_before and silence_after:
seek = round(
max(time_offset + 1, segment["start"])
* self.frames_per_second
)
if content_duration - segment["end"] < threshold:
seek = content_frames
current_segments[si:] = []
break
hal_last_end = segment["end"]
last_word_end = get_end(current_segments)
if last_word_end is not None:
last_speech_timestamp = last_word_end
for segment in current_segments:
tokens = segment["tokens"]
@@ -651,6 +863,21 @@ class WhisperModel:
max_initial_timestamp_index = int(
round(options.max_initial_timestamp / self.time_precision)
)
if options.max_new_tokens is not None:
max_length = len(prompt) + options.max_new_tokens
else:
max_length = self.max_length
if max_length > self.max_length:
raise ValueError(
f"The length of the prompt is {len(prompt)}, and the `max_new_tokens` "
f"{max_length - len(prompt)}. Thus, the combined length of the prompt "
f"and `max_new_tokens` is: {max_length}. This exceeds the "
f"`max_length` of the Whisper model: {self.max_length}. "
"You should either reduce the length of your prompt, or "
"reduce the value of `max_new_tokens`, "
f"so that their combined length is less that {self.max_length}."
)
for temperature in options.temperatures:
if temperature > 0:
@@ -672,7 +899,7 @@ class WhisperModel:
length_penalty=options.length_penalty,
repetition_penalty=options.repetition_penalty,
no_repeat_ngram_size=options.no_repeat_ngram_size,
max_length=self.max_length,
max_length=max_length,
return_scores=True,
return_no_speech_prob=True,
suppress_blank=options.suppress_blank,
@@ -730,6 +957,8 @@ class WhisperModel:
if (
options.no_speech_threshold is not None
and result.no_speech_prob > options.no_speech_threshold
and options.log_prob_threshold is not None
and avg_logprob < options.log_prob_threshold
):
needs_fallback = False # silence
@@ -756,12 +985,19 @@ class WhisperModel:
previous_tokens: List[int],
without_timestamps: bool = False,
prefix: Optional[str] = None,
hotwords: Optional[str] = None,
) -> List[int]:
prompt = []
if previous_tokens:
if previous_tokens or (hotwords and not prefix):
prompt.append(tokenizer.sot_prev)
prompt.extend(previous_tokens[-(self.max_length // 2 - 1) :])
if hotwords and not prefix:
hotwords_tokens = tokenizer.encode(" " + hotwords.strip())
if len(hotwords_tokens) >= self.max_length // 2:
hotwords_tokens = hotwords_tokens[: self.max_length // 2 - 1]
prompt.extend(hotwords_tokens)
if previous_tokens:
prompt.extend(previous_tokens[-(self.max_length // 2 - 1) :])
prompt.extend(tokenizer.sot_sequence)
@@ -803,6 +1039,7 @@ class WhisperModel:
word_durations = np.array([word["end"] - word["start"] for word in alignment])
word_durations = word_durations[word_durations.nonzero()]
median_duration = np.median(word_durations) if len(word_durations) > 0 else 0.0
median_duration = min(0.7, float(median_duration))
max_duration = median_duration * 2
# hack: truncate long words at sentence boundaries.
@@ -1002,15 +1239,16 @@ def get_compression_ratio(text: str) -> float:
def get_suppressed_tokens(
tokenizer: Tokenizer,
suppress_tokens: Optional[List[int]],
suppress_tokens: Tuple[int],
) -> Optional[List[int]]:
if not suppress_tokens or -1 in suppress_tokens:
return suppress_tokens
if -1 in suppress_tokens:
suppress_tokens = [t for t in suppress_tokens if t >= 0]
suppress_tokens.extend(tokenizer.non_speech_tokens)
elif suppress_tokens is None or len(suppress_tokens) == 0:
suppress_tokens = [] # interpret empty string as an empty list
else:
assert isinstance(suppress_tokens, list), "suppress_tokens must be a list"
suppress_tokens = list(suppress_tokens)
# Ensure the following special tokens are suppressed when the user does
# not use the default set (-1).
suppress_tokens.extend(
[
tokenizer.transcribe,
@@ -1021,7 +1259,7 @@ def get_suppressed_tokens(
]
)
return sorted(set(suppress_tokens))
return tuple(sorted(set(suppress_tokens)))
def merge_punctuations(alignment: List[dict], prepended: str, appended: str) -> None:

View File

@@ -22,6 +22,10 @@ _MODELS = {
"large-v2": "Systran/faster-whisper-large-v2",
"large-v3": "Systran/faster-whisper-large-v3",
"large": "Systran/faster-whisper-large-v3",
"distil-large-v2": "Systran/faster-distil-whisper-large-v2",
"distil-medium.en": "Systran/faster-distil-whisper-medium.en",
"distil-small.en": "Systran/faster-distil-whisper-small.en",
"distil-large-v3": "Systran/faster-distil-whisper-large-v3",
}
@@ -49,9 +53,10 @@ def download_model(
"""Downloads a CTranslate2 Whisper model from the Hugging Face Hub.
Args:
size_or_id: Size of the model to download from https://huggingface.co/guillaumekln
(tiny, tiny.en, base, base.en, small, small.en medium, medium.en, large-v1, large-v2,
large-v3, large), or a CTranslate2-converted model ID from the Hugging Face Hub
size_or_id: Size of the model to download from https://huggingface.co/Systran
(tiny, tiny.en, base, base.en, small, small.en, distil-small.en, medium, medium.en,
distil-medium.en, large-v1, large-v2, large-v3, large, distil-large-v2,
distil-large-v3), or a CTranslate2-converted model ID from the Hugging Face Hub
(e.g. Systran/faster-whisper-large-v3).
output_dir: Directory where the model should be saved. If not set, the model is saved in
the cache directory.
@@ -143,3 +148,10 @@ class disabled_tqdm(tqdm):
def __init__(self, *args, **kwargs):
kwargs["disable"] = True
super().__init__(*args, **kwargs)
def get_end(segments: List[dict]) -> Optional[float]:
return next(
(w["end"] for s in reversed(segments) for w in reversed(s["words"])),
segments[-1]["end"] if segments else None,
)

View File

@@ -1,7 +1,6 @@
import bisect
import functools
import os
import warnings
from typing import List, NamedTuple, Optional
@@ -25,9 +24,6 @@ class VadOptions(NamedTuple):
split aggressively just before max_speech_duration_s.
min_silence_duration_ms: In the end of each speech chunk wait for min_silence_duration_ms
before separating it
window_size_samples: Audio chunks of window_size_samples size are fed to the silero VAD model.
WARNING! Silero VAD models were trained using 512, 1024, 1536 samples for 16000 sample rate.
Values other than these may affect model performance!!
speech_pad_ms: Final speech chunks are padded by speech_pad_ms each side
"""
@@ -35,7 +31,6 @@ class VadOptions(NamedTuple):
min_speech_duration_ms: int = 250
max_speech_duration_s: float = float("inf")
min_silence_duration_ms: int = 2000
window_size_samples: int = 1024
speech_pad_ms: int = 400
@@ -61,15 +56,8 @@ def get_speech_timestamps(
min_speech_duration_ms = vad_options.min_speech_duration_ms
max_speech_duration_s = vad_options.max_speech_duration_s
min_silence_duration_ms = vad_options.min_silence_duration_ms
window_size_samples = vad_options.window_size_samples
window_size_samples = 512
speech_pad_ms = vad_options.speech_pad_ms
if window_size_samples not in [512, 1024, 1536]:
warnings.warn(
"Unusual window_size_samples! Supported window_size_samples:\n"
" - [512, 1024, 1536] for 16000 sampling_rate"
)
sampling_rate = 16000
min_speech_samples = sampling_rate * min_speech_duration_ms / 1000
speech_pad_samples = sampling_rate * speech_pad_ms / 1000
@@ -84,14 +72,14 @@ def get_speech_timestamps(
audio_length_samples = len(audio)
model = get_vad_model()
state = model.get_initial_state(batch_size=1)
state, context = model.get_initial_states(batch_size=1)
speech_probs = []
for current_start_sample in range(0, audio_length_samples, window_size_samples):
chunk = audio[current_start_sample : current_start_sample + window_size_samples]
if len(chunk) < window_size_samples:
chunk = np.pad(chunk, (0, int(window_size_samples - len(chunk))))
speech_prob, state = model(chunk, state, sampling_rate)
speech_prob, state, context = model(chunk, state, context, sampling_rate)
speech_probs.append(speech_prob)
triggered = False
@@ -261,12 +249,12 @@ class SileroVADModel:
sess_options=opts,
)
def get_initial_state(self, batch_size: int):
h = np.zeros((2, batch_size, 64), dtype=np.float32)
c = np.zeros((2, batch_size, 64), dtype=np.float32)
return h, c
def get_initial_states(self, batch_size: int):
state = np.zeros((2, batch_size, 128), dtype=np.float32)
context = np.zeros((batch_size, 64), dtype=np.float32)
return state, context
def __call__(self, x, state, sr: int):
def __call__(self, x, state, context, sr: int):
if len(x.shape) == 1:
x = np.expand_dims(x, 0)
if len(x.shape) > 2:
@@ -276,16 +264,15 @@ class SileroVADModel:
if sr / x.shape[1] > 31.25:
raise ValueError("Input audio chunk is too short")
h, c = state
x = np.concatenate([context, x], axis=1)
ort_inputs = {
"input": x,
"h": h,
"c": c,
"state": state,
"sr": np.array(sr, dtype="int64"),
}
out, h, c = self.session.run(None, ort_inputs)
state = (h, c)
out, state = self.session.run(None, ort_inputs)
context = x[..., -64:]
return out, state
return out, state, context

View File

@@ -1,3 +1,3 @@
"""Version information."""
__version__ = "0.10.0"
__version__ = "1.0.3"

View File

@@ -1,5 +1,5 @@
av==10.*
ctranslate2>=3.22,<4
av>=11.0,<13
ctranslate2>=4.0,<5
huggingface_hub>=0.13
tokenizers>=0.13,<0.16
tokenizers>=0.13,<1
onnxruntime>=1.14,<2

View File

@@ -37,7 +37,7 @@ setup(
long_description=get_long_description(),
long_description_content_type="text/markdown",
author="Guillaume Klein",
url="https://github.com/guillaumekln/faster-whisper",
url="https://github.com/SYSTRAN/faster-whisper",
classifiers=[
"Development Status :: 4 - Beta",
"Intended Audience :: Developers",

View File

@@ -1,6 +1,8 @@
import os
from faster_whisper import WhisperModel, decode_audio
from faster_whisper.tokenizer import Tokenizer
from faster_whisper.transcribe import get_suppressed_tokens
def test_supported_languages():
@@ -97,3 +99,109 @@ def test_stereo_diarization(data_dir):
segments, _ = model.transcribe(right)
transcription = "".join(segment.text for segment in segments).strip()
assert transcription == "The horizon seems extremely distant."
def test_suppressed_tokens_minus_1():
model = WhisperModel("tiny.en")
tokenizer = Tokenizer(model.hf_tokenizer, False)
tokens = get_suppressed_tokens(tokenizer, [-1])
assert tokens == (
1,
2,
7,
8,
9,
10,
14,
25,
26,
27,
28,
29,
31,
58,
59,
60,
61,
62,
63,
90,
91,
92,
93,
357,
366,
438,
532,
685,
705,
796,
930,
1058,
1220,
1267,
1279,
1303,
1343,
1377,
1391,
1635,
1782,
1875,
2162,
2361,
2488,
3467,
4008,
4211,
4600,
4808,
5299,
5855,
6329,
7203,
9609,
9959,
10563,
10786,
11420,
11709,
11907,
13163,
13697,
13700,
14808,
15306,
16410,
16791,
17992,
19203,
19510,
20724,
22305,
22935,
27007,
30109,
30420,
33409,
34949,
40283,
40493,
40549,
47282,
49146,
50257,
50357,
50358,
50359,
50360,
)
def test_suppressed_tokens_minus_value():
model = WhisperModel("tiny.en")
tokenizer = Tokenizer(model.hf_tokenizer, False)
tokens = get_suppressed_tokens(tokenizer, [13])
assert tokens == (13, 50257, 50357, 50358, 50359, 50360)